
Slide-tags: scalable, single-nucleus barcoding for multi-modal
spatial genomics

Andrew J. C. Russell1,2,*, Jackson A. Weir1,3,*, Naeem M. Nadaf1,*, Matthew Shabet1, Vipin
Kumar1, Sandeep Kambhampati1,4, Ruth Raichur1, Giovanni J. Marrero1, Sophia Liu1,5,6, Karol S.
Balderrama1, Charles R. Vanderburg1, Vignesh Shanmugam1,7, Luyi Tian1,8, Catherine J.
Wu1,9,10,11, Charles H. Yoon12, Evan Z. Macosko1,13,**, Fei Chen1,2,**

1Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
2Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
02138, USA
3Biological and Biomedical Sciences Program, Harvard University, Cambridge, MA 02115, USA
4Department of Biomedical Informatics, Harvard University, 10 Shattuck Street, Suite 514,
Boston, MA 02115, USA
5Biophysics Program, Harvard University, Boston, MA 02115, USA
6Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA
7Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston,
MA 02115, USA
8Present address: Guangzhou Laboratory, Guangdong, China
9Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
10Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston,
MA 02115, USA
11Division of Stem Cell Transplantation and Cellular Therapies, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
12Department of Surgical Oncology, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
13Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
*,** These authors contributed equally

Correspondence: Evan Z. Macosko (emacosko@broadinstitute.org) and Fei Chen
(chenf@broadinstitute.org)

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 3, 2023. ; https://doi.org/10.1101/2023.04.01.535228doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.01.535228


Abstract

Recent technological innovations have enabled the high-throughput quantification of gene
expression and epigenetic regulation within individual cells, transforming our understanding of
how complex tissues are constructed. Missing from these measurements, however, is the
ability to routinely and easily spatially localise these profiled cells. We developed a strategy,
Slide-tags, in which single nuclei within an intact tissue section are ‘tagged’ with spatial
barcode oligonucleotides derived from DNA-barcoded beads with known positions. These
tagged nuclei can then be used as input into a wide variety of single-nucleus profiling assays.
Application of Slide-tags to the mouse hippocampus positioned nuclei at less than 10 micron
spatial resolution, and delivered whole-transcriptome data that was indistinguishable in quality
from ordinary snRNA-seq. To demonstrate that Slide-tags can be applied to a wide variety of
human tissues, we performed the assay on brain, tonsil, and melanoma. We revealed
cell-type-specific spatially varying gene expression across cortical layers and spatially
contextualised receptor-ligand interactions driving B-cell maturation in lymphoid tissue. A major
benefit of Slide-tags is that it is easily adaptable to virtually any single-cell measurement
technology. As proof of principle, we performed multiomic measurements of open chromatin,
RNA, and T-cell receptor sequences in the same cells from metastatic melanoma. We identified
spatially distinct tumour subpopulations to be differentially infiltrated by an expanded T-cell
clone and undergoing cell state transition driven by spatially clustered accessible transcription
factor motifs. Slide-tags offers a universal platform for importing the compendium of
established single-cell measurements into the spatial genomics repertoire.

Introduction

Technology development efforts in genomics during the last decade have produced an
extensive toolkit of single-cell and single-nucleus sequencing methods, enabling
high-throughput molecular characterization of many macromolecules1–7. Missing from these
measurements, however, is the cytoarchitectural organisation of the cells being profiled.
Spatially-resolved sequencing technologies aim to address this drawback by barcoding
macromolecules with oligonucleotides whose spatial positions are known8–12. However, direct
transfer of design principles from single-cell sequencing methods to spatially-resolved profiling
is often impossible, necessitating the re-invention of each molecular assay (e.g.
transcriptomics9,10, mutations8, or ATAC-seq13–15) in a spatial context. Furthermore, while
single-cell computational tools are extremely mature16, additional sources of noise in spatial
genomics techniques require their re-design as well, for example to address problems with
cellular mixing17–19. An alternative to capture-based strategies is to isolate single cells while
retaining spatial barcoding information; so far, this has been demonstrated only at limited
spatial resolution, and with sparse sampling of tissues20,21. An ideal spatial genomics
technology would: 1) efficiently capture cell profiles from tissue sections; 2) resolve cellular
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positions at low-micrometre resolution; and 3) be generally applicable to any single-cell
methodology.

Here we introduce Slide-tags, a method in which cellular nuclei from an intact fresh frozen
tissue section are ‘tagged’ with spatial barcode oligonucleotides derived from DNA-barcoded
beads with known positions. Isolated nuclei are then profiled with existing single-cell methods
with the addition of spatial positions. We demonstrate the tissue versatility of Slide-tags by
assaying adult and developing mouse brain, human cerebral cortex, human tonsil, and human
melanoma. Across tissues and species, we import spatially “tagged” nuclei into standard
workflows for single-nucleus RNA-seq (snRNA-seq), single-nucleus ATAC-seq (snATAC-seq),
and T-cell receptor (TCR) sequencing. Slide-tags is also readily integrated into established
single-cell computational workflows, such as copy number variation (CNV) inference. In doing
so, we leverage the truly single-cell, spatially resolved, multimodal capacity of Slide-tags to
reveal cell-type specific spatially varying gene expression, spatially contextualise
receptor-ligand interactions, and dissect genetic and epigenetic factors participating in tumour
microenvironments.

Results

Labelling of nuclei with spatial oligonucleotide barcodes

We previously developed densely packed spatially indexed arrays of DNA-barcoded 10 μm
beads, generated using split-pool phosphoramidite synthesis and indexed by
sequencing-by-ligation8,10,22. In our original Slide-seq methodology, DNA or RNA from tissues is
captured and spatially barcoded using these arrays. In our new Slide-tags technology, we
photocleave and diffuse these bead-derived spatial barcodes into 20 μm fresh frozen tissue
sections to associate them with nuclei (Fig. 1a). We postulated that once these barcodes are
associated with nuclei, they could be used as input to established single nucleus sequencing
approaches (Methods) with only minor protocol modifications.

Spatially-resolved single-nucleus RNA sequencing of the mouse brain

To benchmark our approach, we performed Slide-tags followed by droplet-based snRNA-seq
on a 20 μm coronal section of the adult mouse hippocampus, which has a highly stereotyped
architecture that is useful for validating spatial techniques10. We dissociated and sequenced
1,661 nuclei from a 3 mm2 area coronal tissue section, clustering the data using a standard
single cell pipeline23 (Fig. 1b), and annotating clusters using well-established cell class markers
(Fig. S1). Multiple spatial barcodes were detected per nucleus, allowing higher assignment
confidence than protocols where only one spatial barcode is associated with a cell (Fig. 1c). To
spatially position our single nucleus transcriptomes, we utilised density-based spatial clustering
of applications with noise (DBSCAN)24 to separate background spatial barcodes from true
signal (Fig. S2, Methods). Nuclei are then assigned a spatial coordinate using the
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UMI-weighted centroid of the DBSCAN-clustered spatial barcodes denoted true signal
(Methods). Using this procedure, we assigned spatial locations to 839 high-quality nuclei
profiles (50.5% of profiled nuclei, 11250 median UMIs per nucleus). Examination of the spatial
positions of individual clusters recapitulated the expected cytoarchitectural arrangement of the
hippocampus (Fig. 1d). Furthermore, spatial expression profiles of individual genes matched
existing in situ hybridization data25 (Fig. 1e). To quantify spatial positioning accuracy, we first
compared the width of the hippocampal subfield CA1 in Slide-tags with a Nissl-stained serial
section and found the width of the Slide-tags feature was congruent with the Nissl image (Fig.
S3). Second, we calculated the standard error for each centroid in x and y, and estimated
accuracy to be 3.5 ± 1.9 μm in x and 3.5 ± 2 μm in y (mean ± s.d., Fig. 1f). Third, we quantified
the nuclei misassignment rate by leveraging the stereotyped structure of the CA1 and dentate
gyrus (DG). We found that 98.7% of CA1 (155/157) and dentate granule (312/316) neurons were
localised in the CA1 pyramidal layer, and the DG, respectively (Fig. S1b). We investigated
whether the tagging procedure affected resultant snRNA-seq data quality by comparing
standard snRNA-seq with Slide-tags followed by snRNA-seq on adjacent sections of mouse
hippocampus. We found that recovered cell type proportions (Pearson's r = 0.96, p value <
2.2x10-16), UMIs recovered per cell (Pearson's r = 0.96, p value < 2.2x10-16), and gene
expression (Pearson's r = 0.99, p value < 2.2x10-16) were all unaffected by the tagging
procedure (Fig. 1g-i). Thus, Slide-tags generated data virtually indistinguishable from
snRNA-seq with a theoretical ~3 micrometre spatial localization accuracy.

We next performed Slide-tags snRNA-seq on a 7 mm2 area sagittal section of the embryonic
mouse brain at E14 (Fig. S4 a,b), which has been frequently used for benchmarking of new
spatial transcriptomics technologies11,22,26. We sequenced and spatially positioned 4,584 nuclei
(4594 median UMIs per nucleus), which we clustered and annotated by cell type (Fig S4 c-e).
Compared with existing approaches for single-cell spatial placement, Slide-tags achieved
20-50-fold higher spatial resolution and recovered 4.5-fold more nuclei per unit area. We also
recovered 1.8-fold more UMIs and 1.7-fold more genes per nucleus than adjacent technologies
at a sequencing saturation of 48% (Fig. S4f).
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Fig. 1: Slide-tags enables single-nucleus spatial transcriptomics in mouse hippocampus.
a, Schematic of Slide-tags. A 20 μm fresh-frozen tissue section is applied to a monolayer of
randomly deposited, DNA barcoded beads that have been spatially indexed. These DNA spatial
barcodes are photocleaved, and associate with nuclei. Spatially barcoded nuclei are then
profiled using established droplet-based single-nucleus sequencing technologies. b, UMAP
embedding of snRNA-seq profiles coloured by cell-type annotations. c, Plots showing the
signal spatial barcode clusters for select cells, coloured by cell-type annotations and number of
spatial barcode UMIs d, Slide-tags applied to mouse hippocampus enables localization of
single nuclei to spatial coordinates, cells are coloured by cell-type annotation as in b. e, Spatial
expression of known marker genes compared to in situ hybridization data from Allen Mouse
Brain Atlas25. f, Plot showing the standard error (SE) for each singlet true spatial barcode
cluster in x and y. Density shows: centre line, median; adjacent lines, upper and lower quartiles;
g-i, Comparison metrics plotted for snRNA-seq compared to Slide-tags snRNA-seq,
performed on consecutive sections. 95% Confidence intervals are plotted. g, Cell type
proportions and mean UMIs per cell is plotted by cell type. h, Normalised average count is per
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gene across all cells. i, Expression counts for each cell were divided by the total counts for that
cell and multiplied by 10,000, this value + 1 is then natural-log transformed. r is the Pearson
correlation coefficient. All scale bars denote 500 μm. DG = dentate gyrus, Oligo =
oligodendrocyte, CA1 = Cornu Ammonis area 1, CA3 = Cornu Ammonis area 3.

Slide-tags enables the identification of layer-specific gene expression across cell types
in the human prefrontal cortex

The human cerebral cortex has a well-characterised cytoarchitecture in which specific
subpopulations of neurons are arranged in discrete layers. Existing spatial sequencing
approaches can resolve broad patterns of spatially varying gene expression in human cortex27,
but assignment of spatially variable genes to specific cell types is challenging with these
methods. We reasoned that Slide-tags could be used for facile profiling of human brain tissue,
most especially to discover cell-type-specific spatial gene expression patterns. We profiled a
28.3 mm2 region of the human prefrontal cortex from a 78-year-old neurotypical donor
(Methods), recovering 4,067 high-quality spatially mapped nuclei with a median of 3,024 UMIs
per nucleus (Fig. 2a). Clustering analysis revealed the expected neuronal and glial cell types,
recapitulating known layer distributions and spatial structures (Fig. 2b-d, S5a-b). We
computationally integrated (Methods) an existing snRNA-seq dataset28 that includes layer
annotations for 91 neuron subtypes, recovering the expected spatial distributions across
subtypes (Fig. 2e-f, S6). Similarly, astrocytes could be clustered into two distinct populations
that spatially segregated between white and grey matter regions (Fig. 2g). Quantification of the
laminar position of each of these excitatory, inhibitory, and astrocytic populations showed them
to be accurately positioned within the white matter and cortical layers (Fig. 2h).

We next used our whole-transcriptome, spatially resolved snRNA-seq profiles to systematically
identify spatially varying genes in each cell type. We plotted the layer distributions of the
highest spatially varying genes (Methods, Table S1) for excitatory neurons (Fig. 2i, S7a),
recovering many well-known laminar markers such as CUX2, RORB, and FOXP2 (Fig. S5c), as
well as for inhibitory neurons (Fig. S5d, S7b) and astrocytes (Fig. S5e, S8a). Interestingly, we
also identified spatially varying genes within oligodendrocyte precursor cells (OPCs) which had
not been previously known to have areal specialisations (Fig. 2j, S8b). Gene ontology analysis
on these spatially varying genes revealed a relationship to biological processes that included
cell-cell adhesion, cell junction assembly, and axon development (Fig. 2k, S9, Table S2).

Genes can show spatially variable expression which may derive from several cell types, but
assigning such expression variability to individual cell types can be very challenging with
traditional spatial transcriptomics approaches because of the mixing of individual pixels.
Amongst our spatially varying genes, we identified several that were variable across multiple
cell types, such as SGCZ, whose spatial expression variation in excitatory and inhibitory
neurons was anticorrelated, and showed an orthogonal spatial distribution in OPCs (Fig. 2l).
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Together, these results demonstrate the ability of Slide-tags to systematically uncover
transcriptional variation within the cytoarchitecturally complex tissues of the human brain.

Fig. 2: Spatially-resolved cell type-specific expression in the human brain using
Slide-tags snRNA-seq. a, Schematic of Slide-tags snRNA-seq on a 5.5 mm square region of
human prefrontal cortex. b, UMAP embedding of snRNA-seq profiles, coloured by cell type
assignment. c, Spatial mapping of snRNA-seq profiles, coloured by cell type as in b. d, A
Nissl-stained tissue section adjacent to the profiled section. e, Spatial mapping of grouped
excitatory neuron subtypes. f, Spatial mapping of grouped inhibitory neuron subtypes. g,
Spatial mapping of white and grey matter astrocytes. h, Ridge plot showing the layer specificity
of grouped excitatory neuron, grouped inhibitory neuron, and astrocyte subtypes. i,j Heatmaps
of 1D gene expression for excitatory neurons (i), and OPCs (j). k, Gene ontology analysis of the
highest spatially variable genes in each cell type. l, Ridge plot showing the spatial expression
of genes with contrasting gradients across cell types. All scale bars denote 500 μm. Oligo =
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Oligodendrocyte, OPC = Oligodendrocyte precursor cell, Astro = Astrocyte, INH = Inhibitory,
EX = Excitatory, GM = Grey matter, WM = White matter.

Spatially-informed receptor-ligand prediction in immune cell-dense human tonsil

A key challenge for spatial genomics technologies is the proper segmentation of densely
packed tissues, such as those of immune origin. We reasoned that Slide-tags would be ideal in
this setting, given that segmentation is accomplished automatically by dissociating the tissue
into individual nuclei. We therefore performed Slide-tags snRNA-seq on human tonsil (Fig.
3a-d), recovering 81,000 nuclei after dissociation from 7 mm2 of tissue. We sequenced 8,747 of
these nuclei, spatially mapping 5,778 high quality snRNA-seq profiles (2,377 median UMIs per
nucleus and 1,557 median genes per nucleus). Clustering of the data identified subpopulations
of B and T cells, some of which are known to be spatially segregated (Fig. S10a-b). Indeed,
examination of the spatial positions of these clusters revealed the expected spatial architecture
of the tissue, with B and T cell zones, as well as germinal centres composed of germinal centre
B cells (GCBs), T follicular helper cells, and follicular dendritic cells (Fig. 3c-d, S10b).
Sub-classification of GCBs into light zone and dark zone GCBs is challenging using
snRNA-seq data alone, as variation in gene expression space is low, requiring many cells to be
sampled to uncover the distinction29. However, since reactive germinal centres are spatially
polarised into light zones and dark zones, we reasoned that we could classify GCBs by
harnessing the combined spatial and single-cell data. To do so, we computed spatially varying
genes within GCBs via spatial permutation testing22, identifying key markers of light zone and
dark zone GCBs (Fig. 3e-f, Table S3). Dark zone marker genes included CXCR4 (Double sided
permutation test, Z-score = 7.6, p value < 0.001) and AICDA (Z-score = 6.9, p value < 0.001),
genes for dark zone organisation and somatic hypermutation, respectively30–32. Light
zone-enriched genes included BCL2A1 (Z-score = 9.1, p value < 0.001), an apoptosis regulator
gene33, and LMO2 (Z-score = 21.3, p value < 0.001), a transcription factor34,35. A subset of
expected light zone and dark zone markers had relatively low variance in gene expression, but
high spatial permutation effect sizes, demonstrating that spatial positions enhance
interpretation of transcriptomic profiles (Fig. S10c, Table S4). Re-clustering GCBs on spatially
varying genes enabled classification into dark zone, light zone, and transitional cell states (Fig.
3g, Methods). We then segmented the two largest profiled germinal centres into light zones
and dark zones via spatial clustering of dark zone GCBs, the most abundant GCB cell state
(Fig. S10d). In corroboration of our zone segmentation, we found T follicular helper cells were
enriched in light zones while follicular dendritic cells were dispersed between the light zone and
the dark zone (Fig. 3h, Chi-squaredTfh = 43.7, p valueTfh = 3.7x10-11, Chi-squaredFDC = 0.58, p
valueFDC = 0.45).

Immune cells engage in extensive cross talk within and around germinal centres36. We
wondered whether Slide-tags could uncover receptor-ligand interactions that drive such
intercellular communication. We first nominated putative receptor-ligand interactions in a
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spatially agnostic manner using LIANA37. We then incorporated spatial information by
performing a spatial permutation test to identify interactions that significantly co-occur spatially
(Methods). Using this approach, we predicted 645 receptor-ligand interactions, many of which
are well-characterised axes of communication during B cell maturation (Fig. 3i, Table S5). For
example, we predicted interaction between CD40 and CD40LG within GCBs and T follicular
helper cells, a fundamental driver of the germinal centre reaction38. We also identified
downstream targets of canonical receptor-ligand interactions, such as TRAF3, important in
regulating the intracellular effects of CD40-CD40LG binding39.

Finally, we reasoned we could spatially contextualise receptor-ligand interactions within native
tissue niches. Our predicted interactions can be decomposed into interaction intensity scores
for individual cells based on expression and spatial co-occurrence of the receptor and ligand.
For the 99 nominated receptor-ligand pairs between GCBs, FDCs, and T follicular helper cells,
we used our germinal centre zone segmentations to assess light zone and dark zone
enrichment in predicted interaction intensity. We revealed light zone enrichment of 11
interactions and dark zone enrichment of 9 interactions (Fig. S10e, Table S6). GCB CD40
receptor in interaction with T follicular helper cell CD40LG was highly enriched in light zones
(Fig. 3j, Wilcoxon rank-sum test, log2FC = 1.6, adjusted p value = 1.6x10-9), while CD40
receptor expression alone was modestly dark zone-biassed (Wilcoxon rank-sum test, log2FC =
-0.04, p value = 0.047). We also revealed zone-biassed interactions with lesser-known
importance in the germinal centre reaction, such as the light zone-enriched interaction between
T follicular helper cell CD40LG and GCB CD53 (Fig S10e, Wilcoxon rank-sum test, log2FC =
1.6, p value = 2.3x10-23). Altogether, Slide-tags enabled spatial contextualization of cell-type
specific receptor-ligand interactions not obvious by analysis of expression alone.
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Fig. 3: Slide-tags enables cell-type specific spatially varying gene expression analysis
and spatial receptor-ligand interaction prediction within human tonsil. a, Schematic of
Slide-tags snRNA-seq on a 3 mm diameter region of human tonsil tissue. b, UMAP embedding
of snRNA-seq profiles coloured by cell-type annotations. c, Spatial mapping of snRNA-seq
profiles, coloured by cell type as in b. d, Adjacent H&E-stained section of the profiled region. e,
Inset of two germinal centres coloured by cell type f, Expression of dark zone and light zone
marker genes identified as spatially varying within germinal centres. g, GCB cell state
classification and zone segmentation by cluster density of dark zone GCBs. h, Spatial mapping
of T follicular helper cells and follicular dendritic cells on zoned germinal centres. i, Dot plot
showing select spatially co-occurring receptor-ligand interactions, within certain
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sender-receiver cell type pairs. j, Spatial mapping of interaction intensity scores for CD40 in
GCBs and CD40LG in T follicular helper cells. All scale bars denote 500 μm. mDC = myeloid
dendritic cells, pDC = plasmacytoid dendritic cells, GCB = germinal centre B cells, Tfh = T
follicular helper cells.

Slide-tags enables multimodal spatial investigation of metastatic melanoma clones

Epigenetic dysregulation in cancer facilitates drug resistance and pro-metastatic cell state
transitions40–43. Numerous studies of tumour heterogeneity have revealed clone-specific niches
and immune compartments8,44,45, but the role of epigenetic regulation in establishing and
maintaining these spatial niches remains difficult to study. Concurrent spatial mapping of the
genome, transcriptome, and epigenomic landscape of the tumour microenvironment could
unravel new insights into the complex mechanisms of tumour evolution. Therefore, we
developed Slide-tags multiome, enabling simultaneous single-cell spatial profiling of mRNA
and chromatin accessibility, along with copy number variation inference.

We first performed Slide-tags snRNA-seq on a metastatic melanoma sample (Fig. S11a-f). We
recovered 10,960 nuclei after dissociation from 7 mm2 of tissue, sequencing 6,464 of these
nuclei and spatially mapping 4,804 high-quality snRNA-seq profiles (2,110 median UMIs per
nucleus and 1,317 median genes per nucleus). In an adjacent section, we applied Slide-tags
multiome, profiling the tagged nuclei with droplet-based combinatorial snATAC and snRNA-seq
(Fig. 4a-b). We spatially mapped 2,529 nuclei from a 38.3 mm2 section and both modalities
displayed high quality on basic technical performance metrics (Fig. 4b-c, Fig. S12a-e, median
UMIs/nucleus = 5,228, median genes/nucleus = 2,429, TSS enrichment score = 11.5, median
fragments/nucleus = 1,159, median fraction of unique fragments in peaks = 36.7%).

Unsupervised clustering of snRNA-seq and multiome data identified immune, stromal, and
tumour cell types (Fig 4b, Fig. S11e-f). The tumour cells were split into two subpopulations,
denoted as tumour cluster 1 and tumour cluster 2, that segregated into spatially distinct
compartments (Fig 4b-c, Fig. S11e). As copy number variation plays an important role in
melanoma tumour evolution46,47, we sought to identify if these transcriptional subpopulations
represented distinct genetic clones. We inferred copy number alterations via inferCNV48, a
standard scRNA-seq CNV inference tool, from the transcriptomes of each spatially mapped
nucleus (Methods). Indeed, across both the snRNA-seq and the multiome data, we uncovered
genomic differences consistent with the spatial and transcriptional separation between tumour
cluster 1 and 2 (e.g. CNV on Chr6, Fig. 4d, Fig. S11g).

Our basic clustering analysis showed extensive T-cell infiltration into both tumour
compartments (Fig. S11e, S12d); we wondered whether there might exist heterogeneous T-cell
responses to these genetically distinct compartments. First, we enriched for TCR sequences in
our 1,020 spatially positioned CD8 T-cell cDNA profiles, recovering 419 cells with alpha chains
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(279 unique), 761 cells with beta chains (410 unique), and 358 cells with paired alpha and beta
chains (265 unique) (Table S7). We found a TCR beta clonotype that was significantly expanded
in tumour compartment 2 compared to tumour compartment 1 (Fig. 4e, Fisher’s exact test,
odds ratio = 6.8, p value = 1.1x10-11), in agreement with our previous report49. Given our high
TCR pairing rate (Fig. S12f), we also noted tumour compartment 2 expansion of CD8 T cells
with this beta chain and a paired alpha chain (Fisher’s exact test, odds ratio = 11.9, p value =
9.6x10-6). We observed CD8 T cells in tumour compartment 2 were upregulated in cytotoxic
GZMB expression (Fig. S12g, Table S8). In addition to this T-cell variation, we noted decreased
expression of MHC class I endogenous antigen presentation genes in tumour cluster 1 relative
to tumour cluster 2 (Fig. S13, Gene set enrichment analysis   GO:0002484, overlap ratio = 0.71,
adj. p value = 6.6x10-6, Table S9), potentially contributing to differential T-cell clone infiltration
between the tumour compartments. Thus, we observed a cytotoxic T-cell clone specifically
infiltrating into a spatially and genetically distinct tumour compartment.

To further explore how chromatin accessibility and transcription informs tumour cell state and
how this relates to the tumour microenvironment, we identified spatially-segregated differential
gene expression and differential chromatin gene scores between tumour subpopulations (Fig.
4f, Table S10). TNC emerged as differentially expressed (log2FC = 2.1, adj. p value = 2.4x10-61,
Methods) and differentially accessible by chromatin gene score (Wilcoxon Rank Sum test,
log2FC = 0.81, adj. p value = 1.0x10-12) in tumour cluster 1 compared with tumour cluster 2 (Fig.
4g-h). We observed heterogeneity in TNC chromatin accessibility and gene expression within
tumour cluster 1, which has previously been associated with a mesenchymal-like cell state50–52

therefore, we hypothesised tumour cluster 1 may comprise two cell states: melanocytic-like
and mesenchymal-like. We scored tumour cells for melanocytic-like and mesenchymal-like cell
states using genes previously implicated in this transition50. While tumour cluster 2 was largely
a melanocytic-like population, we observed melanocytic-like and mesenchymal-like scores
were negatively correlated and heterogeneous in tumour cluster 1 (Fig. 4i-j, Fig. S12h-i,
Pearson’s r = -0.60, p value < 2.2x10-16). To uncover trans-acting factors associated with this
transition, we first identified accessible transcription factor (TF) motifs that were correlated with
mesenchymal-like score within tumour cluster 1 using ChromVar53 (Fig. 4k, x-axis, Table S11,
adj. p value < 0.05); positively correlated TF motifs included FOS/JUN family members, which
have previously been implicated in mesenchymal-like melanoma states, and IRF family TFs,
while negatively correlated TF motifs included MITF, a factor involved in maintaining the
melanocytic lineage54,55. While such epigenomic signatures driving mesenchymal-like state
have previously been identified in single cells, they have, to date, not been localised within
tissues. To answer if such epigenetic signatures were spatially non-random, we performed
spatial autocorrelation analysis on TF motif scores in the tumour cluster 1 compartment (Fig.
4k, y-axis, S12j). The top spatially autocorrelated TF motifs associated with mesenchymal-like
state were JUN, FOS, and IRF family members with positive autocorrelation scores, suggesting
these epigenomic signatures are locally clustered. Local clustering of epigenetic states is

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 3, 2023. ; https://doi.org/10.1101/2023.04.01.535228doi: bioRxiv preprint 

https://paperpile.com/c/QJSzLb/oN3v
https://paperpile.com/c/QJSzLb/EIVC+6sxm+F7pr
https://paperpile.com/c/QJSzLb/EIVC
https://paperpile.com/c/QJSzLb/vFJb
https://paperpile.com/c/QJSzLb/kyyM+f1wN
https://doi.org/10.1101/2023.04.01.535228


suggestive of inheritance of epigenetically reprogrammed states in cell division, or local
signalling environmental drivers42,56,57.
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Fig. 4: Multiomic Slide-tags captures spatially-resolved clonal relationships between
single nuclei in human melanoma. a, Schematic representation of joint snATAC-seq and
snRNA-seqon a 5.5 mm square region of a human melanoma lymph node metastasis. b,
UMAP embeddings of snRNA-seq and snATAC-seq profiles coloured by cell type. c, Spatial
mapping of tumour cluster 1 and tumour cluster 2. d, Inferred copy number alterations from
transcriptomic data. NT indicates a representative subset of non-tumour cells. e, Spatial
mapping of a TCR beta chain clonotype expanded in the tumour cluster 2 compartment, with
matched alpha chain indicated above. Grey cells depict positions of all CD8 T cells. f,
Differential gene expression and differential chromatin gene scores between tumour cluster 1
and tumour cluster 2. Red points have adjusted p value < 0.05 for both tests. g, Genome
coverage track and gene expression violin plot of TNC between tumour clusters. Range of
normalised chromatin accessibility signal is 0-50. h, Spatial distribution of TNC chromatin
accessibility gene scores. Gene scores are log2-transformed. i, Weighted-nearest neighbours
UMAP embedding of tumour cells, with cells coloured by Mesenchymal-like and
melanocytic-like cell state scores. j, Spatial mapping of mesenchymal-like cell state scores in
tumour cells. k, Spatial autocorrelation of accessibility in ChromVAR transcription factor motifs
correlated with mesenchymal-like cell state scores. Red indicates spatial autocorrelation
Moran’s I raw p value < 0.05 and significant correlation with mesenchymal-like score (adjusted
p value < 0.05). Green indicates only spatial autocorrelation raw p value < 0.05. Blue indicates
only significant correlation with mesenchymal-like score (adj. p value < 0.05). Only ChromVAR
transcription factor motifs with positive Moran’s I are shown. All scale bars denote 500 μm.
mDC = myeloid dendritic cells, Mono-mac = monocyte-derived macrophages, T reg = T
regulatory cells.

Discussion

Here we developed Slide-tags, a spatial single-nucleus genomics technology that is widely
applicable to tissues spanning different scales, species, and disease states. We profiled
Slide-tags nuclei isolated from mouse and human adult brain with snRNA-seq, showing
indistinguishable RNA data quality and high spatial positioning accuracy, and discovering
cell-type specific spatially varying genes across cortical layers. Applying Slide-tags snRNA-seq
to densely-packed human tonsil enabled spatial contextualization of predicted receptor-ligand
interactions. Finally, to demonstrate the multimodal capacity of Slide-tags, we simultaneously
profiled the transcriptome, epigenome, and TCR repertoire of metastatic melanoma tissue, as
well as inferred copy number variation from transcriptome data. We inferred copy number
alterations from transcriptome data and revealed spatial immune cell differences between
genomically distinct clones. In a cytogenetically homogenous subclone, we discovered two
transitional tumour cell states and leveraged our single-nucleus spatial chromatin accessibility
data to identify spatially auto-correlated transcription factor motifs likely to be participating in
this mesenchymal-like transition.
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Slide-tags offers several key advantages as a spatial genomics technology. First, it is easily
imported into frozen tissue snRNA-seq experiments and allows the addition of spatially
resolved data without requiring specialised equipment or sacrificing data quality. Second, the
data is intrinsically single-cell resolution, without the need for deconvolution and segmentation,
and is high sensitivity (2000-10000 UMIs/cell across our datasets). Third, the technology is
high-throughput, enabling many tissue sections to be profiled at once, and coverage of larger
tissue sections through the construction of bigger bead arrays. Fourth, Slide-tags is easily
adapted to many different single-cell and single-nucleus methodologies. Beyond our
demonstration of spatial snRNA-seq+snATAC-seq, we envision future adaptations of Slide-tags
will enable the profiling of DNA6,58,59, additional epigenetic modifications7,60–63, and proteins64,65.
Computational analyses of such data are uniquely enabled by the ability of Slide-tags to
seamlessly leverage many existing single-cell computational workflows (e.g. Seurat23,
InferCNV48,66, ArchR66).

While immediately useful in many applications, Slide-tags could be improved in two key ways.
First, our method only assays a subset of nuclei in a tissue section. We estimate that the
combination of dissociation and microfluidic losses during nuclei barcoding collectively
account for ~75% of the nuclei lost. This represents an avenue for significant improvement
through tissue-specific optimizations to the dissociation, and improved droplet microfluidics or,
potentially, microfluidic free single-nucleus methods that may barcode nuclei more efficiently67.
Second, Slide-tags is currently limited to single nucleus sequencing methods, primarily due to
the ease of recovering nuclei from frozen tissues. Some methodologies strongly benefit from
single-cell data, such as lineage tracing using mitochondrial genomic variants68,69, and
quantification of transcriptional kinetics70. Future iterations of our technology may be
compatible with tagging whole single cells. Nonetheless, for routine tissue profiling, our current
default approach is snRNA-seq (versus scRNA-seq), owing to advantages in protocol flexibility,
increased nuclei yields, reduced tissue dissociation artefacts, and improvements to cell
sampling bias71.

In recent years, a common experimental paradigm has evolved which pairs the collection of
single-cell (or single-nucleus) data with spatial data to discover cell types, compare across
conditions, and discover spatial patterns within and across these types. Slide-tags represents a
method to merge these experimental modalities into a unified approach, integrating the
ascertainment of cytoarchitectural features with the standard collection of single-cell
sequencing data. By importing the single-cell sequencing toolkit into the spatial repertoire,
Slide-tags will serve as an invaluable tool to study tissue biology across organisms, ages, and
diseases.
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1 - Experimental methods

1.1 Sample information and processing
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Mouse brain

Animal housing. Animals were group-housed with a 12-hour light-dark schedule and allowed to
acclimate to their housing environment for two weeks post arrival. All procedures involving
animals at the Broad Institute were conducted in accordance with the US National Institutes of
Health Guide for the Care and Use of Laboratory Animals under protocol number 0120-09-16
and approved by the Broad Institutional Animal Care and Use Committee.

Brain preparation. At 56 days of age, C57BL/6J mice were anaesthetised by administration of
isoflurane in a gas chamber flowing 3% isoflurane for 1 minute. Anaesthesia was confirmed by
checking for a negative tail pinch response. Animals were moved to a dissection tray and
anaesthesia was prolonged via a nose cone flowing 3% isoflurane for the duration of the
procedure. Transcardial perfusions were performed with ice cold pH 7.4 HEPES buffer
containing 110 mM NaCl, 10 mM HEPES, 25 mM glucose, 75 mM sucrose, 7.5 mM MgCl2, and
2.5 mM KCl to remove blood from brain and other organs sampled. For use in regional tissue
dissections, the brain was removed immediately and frozen for 3 minutes in liquid nitrogen
vapour and then moved to -80 oC for long term storage.

Whole C57 mouse embryos at E14 (MF-104-14-Ser) were purchased from Zyagen and stored
at −80 °C until use. A pregnant mouse was perfused with PBS prior to harvesting and snap
freezing of the whole embryo.

Human brain. Postmortem autopsy tissue (Brodmann area 9 cortex) from a healthy, aged,
female, control case was obtained from the University of Miami Brain Endowment Bank at the
Miller School of Medicine. Tissue was collected in accordance with the standard patient
informed consent procedures of the Brain Endowment Bank in effect at the time of collection
and subject to approval or an exemption determination by their Institutional Review Board.
Use of the tissue at the Broad Institute was approved by the Office of Research Subject
Protection project NHSR-4235. This cortical specimen was stored at -80 °C until use following
equilibration at -20 °C in the cryostat. As a quality control step, tissue architecture was
assessed by Nissl staining following frozen sectioning at 20 µm, and RNA integrity was
determined using trizol extraction followed by RIN assay via the Agilent RNA nano 6000
bioanalyzer method (RIN = 7.2).

Human tonsil. Anonymized excess tissue specimens were obtained from a patient who
underwent a palatine tonsillectomy procedure for tonsillar enlargement. The specimens were
embedded in OCT, snap-frozen and stored at -80°C. As a quality control step, tissue
architecture was assessed by hematoxylin and eosin staining, and RNA integrity was
determined using the Tapestation RNA ScreenTape system (RINe > 7.5). Use of the tissue at the
Broad Institute was approved by the Office of Research Subject Protection project IRB-6429.
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Human metastatic melanoma. Specimens were acquired from a patient who underwent axillary
lymphadenectomy for metastatic BRAF-mutant melanoma prior to starting PD-1 inhibitor. The
specimen was embedded in OCT, snap frozen following surgery, and stored at -80 °C. Use of
the tissue at the Broad Institute was approved by the Office of Research Subject Protection
project NHSR-4182.

1.2 Histological processing

For sections that were stained using Nissl, glass-mounted frozen tissue sections (10 or 20 µm)
were equilibrated to RT and excess condensate was wiped off. Sections were fixed in 70%
ethanol for 2  min, followed by rehydration in ultrapure water for 30  s. Excess water was wiped
off and slides were stained with Arcturus Histogene Solution (ThermoFisher, no. 12241-05) for
4  min. Excess dye was tapped off and slides were rehydrated in water for 10  s for destaining.
Slides were sequentially fixed in 70, 90 and 100 % ethanol for 30  s, 10  s and 1  min,
respectively, post-fixed in xylene solution for 1  min then mounted with Fisher Chemical
Permount (no. SP15-100) and coverslipped. Images were acquired with a Keyence BZ-800XE
microscope under a Nikon Apo 10x  objective or the the Leica Aperio VERSA Brightfield,
Fluorescence & FISH Digital Pathology Scanner under a 10x objective.

For sections that were stained using hematoxylin and eosin H&E, glass-mounted frozen tissue
sections (10 or 20 µm) were equilibrated to RT and excess condensate was wiped off. Sections
were dipped in xylene, processed through a graded ethanol series, and stained with
hematoxylin. The nuclei were “blued” by treatment with a weakly alkaline solution, and washed
with water. Sections were stained with eosin, processed through a graded ethanol series,
xylene, dehydrated, and coverslipped. Brightfield images were taken using the Leica Aperio
VERSA Brightfield, Fluorescence & FISH Digital Pathology Scanner under a 10x objective.

1.3 Barcoded bead synthesis, array fabrication, and sequencing

PLRP-S resin (1000 A, 10-μm; Agilent Technologies, PL1412-4102) was used for the barcoded
oligonucleotide synthesis. The loading of the non-cleavable linker on resin was adjusted to
approximately 30 µmol/g. The Akta OligoPilot 10 oligonucleotide synthesizer was used for
synthesis (850 mg scale). The PC linker (cat. no. 10-4920-90) and reverse phosphoramidites
(10-0001, 10-9201, 10-0301, and 10-5101-10) were purchased from Glen Research. A 0.1 M
solution of phosphoramidites was prepared in anhydrous acetonitrile (ACN) and 0.3 M BMT
(BI0166-1005, Sigma-Aldrich) was used as an activator for coupling (single coupling, 6 min).
Two capping steps (before and after oxidation) were performed with Cap A (BI0224-0505,
Sigma-Aldrich) and Cap B (B1:B2 1:1; BI0347-0505, BI0349-0505 Sigma-Aldrich) reagents. For
the 6.3 mL column, capping was performed by 1 CV or 1.5 CV with one min and for 1.2 mL
column, 2 CV for 0.5 min. The oxidation (5 equiv) was carried out with 0.05 M iodine in pyridine
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(BI0424-1005, Sigma-Aldrich). The detritylation step was performed using 3% dichloroacetic
acid in toluene (BI0832-2505, Sigma-Aldrich).

After the oligonucleotide synthesis, the protecting groups were removed by incubating the resin
in 40% aqueous methylamine for 24 hr at room temperature (20 mg resin/ 2mL). The beads
were washed twice with water (1 mL), three times with methanol (1 mL), three times with 1:1
acetonitrile: water, and three times with acetonitrile (1 mL). Finally, beads were washed three
times with 10 mM Tris buffer pH 7.5 containing 0.01% tween-20 and stored in the same buffer
at 4 °C. It was observed that oligos were released in the buffer if the beads were stored for long
periods of time. In order to remove the released oligos, beads were washed with 70%
acetonitrile/ water and resuspended in storage buffer.

Synthesised sequences for the Slide-tags experiments (PC in the sequences denote
photocleavable linker):

1) Incorporation of capture sequence by ligation: blue colour letters denote the region that is
complementary to the sequence of the 10x Gel beads.

5'-TTT_PC_GCCGGTAATACGACTCACTATAGGGCTACACGACGCTCTTCCGATCTJJJJJJJJTCTT
CAGCGTTCCCGAGAJJJJJJJNNNNNNNVVGCTCGGACACATGGGCG-3'

10X FB1 extension: 5’-GAGCTTTGCTAACGGTCGAGGCTTTAAGGCCGGTCCTAGCAA-3’
Splint: 3’-CTGTGTACCCGCCTCGAAACGATTGC-5’

2) Direct synthesis of capture sequence on beads:
5’-TTT-PC-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTJJJJJJJJTCTTCAGCGTTCCCGA
GAJJJJJJJNNNNNNNVVGCTTTAAGGCCGGTCCTAGCAA-3’

3) Poly A beads:
5’-TTT-PC-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTJJJJJJJJTCTTCAGCGTTCCCGA
GAJJJJJJJNNNNNNNVVA30

Array preparation and sequencing were performed as described previously22.

1.4 Slide-tags procedure

Fresh frozen tissues were cryo-sectioned to 20 μm on a cryostat (CM1950, Leica) at -16 °C.
Pre-cooled 2 mm circular (3331P/25, Integra), 3 mm circular (3332P/25, Integra), or 5.5 mm
square custom-made biopsy punches were used to isolate regions of interest from tissue
sections. The punched tissue regions were then placed on the puck, ensuring there were no
folds. A finger was placed on the bottom of the puck to melt the tissue whilst trying to prevent

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 3, 2023. ; https://doi.org/10.1101/2023.04.01.535228doi: bioRxiv preprint 

https://paperpile.com/c/QJSzLb/8v5R
https://doi.org/10.1101/2023.04.01.535228


rolling. Immediately this puck was placed on the glass slide and placed on ice, and 6-10 µL of
dissociation buffer (82 mM Na2SO4, 30 mM K2SO4, 10 mM Glucose, 10mM HEPES, 5 mM
MgCl2) was placed on top of the puck so that the buffer covered the whole puck. The puck was
then placed under a UV (365 nm) light source (0.42 mW/mm2, Thorlabs, M365LP1-C5,
Thorlabs, LEDD1B) for 30 s (TAGS beads), or 3 mins (SLAC beads), in order to cleave the same
amount of spatial barcode oligonucleotides between bead designs (Fig. S2h). After
photo-cleavage, the puck was incubated for 7.5 mins (TAGS beads) or 5 mins (SLAC beads)
and then placed into a 12-well plate (Corning, 3512). Using a 200 µL pipette, 10 x 200 µL
aliquots of extraction buffer (Dissociation Buffer,  1% Kollidon VA64, 1% Triton X100, 0.01%
BSA, 666 units/mL RNase-inhibitor (Biosearch technologies, 30281-1)) were dispensed onto
the puck for a total volume of 2 mL. Dispensed extraction buffer was triturated up and down on
the puck for 10-15 times to release the tissue. This step was repeated until the tissue was
completely removed from the puck. The puck was removed, and mechanical dissociation of
the supernatant was performed using 1 mL pipette 20-25 times trituration to fully dissociate the
tissue. Dissociated nuclei were removed from the well and the well was rinsed twice with 1 mL
of wash buffer (82 mM Na2SO4, 30 mM K2SO4, 10 mM Glucose, 10mM HEPES, 5 mM MgCl2,
50 µl of RNase-inhibitor (Biosearch technologies, 30281-1)) which was added to nuclei
suspension. Wash buffer was added to the tube to a final volume of 20 mL. This 20 mL was
mixed and divided equally into another 50 mL falcon tube. Nuclei were spun in a pre-cooled
swinging bucket centrifuge at 600 g for 10 min at 4 °C. After centrifugation, 19.5 mL of
supernatant was removed, leaving 500 µL in each tube. The pellet was resuspended and
pooled. This pooled suspension was then filtered using a pre-cooled 40 µm cell strainer
(Corning, 431750). DAPI (Thermo Fisher Scientific, 62248) was added to the filtered solution at
a 1:1000 dilution and incubated for 5-7 mins at 4 °C. This was then centrifuged at 200 g for 10
mins at 4 °C. The supernatant was removed, leaving 50 µL of pellet. The pellet was
resuspended and nuclei were counted manually using a C-Chip Fuchs-Rosenthal disposable
hemocytometer (INCYTO, DHC-F01-5).

1.5 Sequencing library preparation

snRNA-seq library preparation

For Slide-tags snRNA-seq experiments, 43.3 µL of counted nuclei were loaded into the 10x
Genomics Chromium controller using the Chromium Next GEM Single Cell 3’ Kit v3.1 (10x
Genomics, PN-1000268). The Chromium Next GEM Single Cell 3’ Reagent Kits v3.1 (Dual
Index) with Feature Barcode technology for Cell Surface Protein CG000317 was used
according to the manufacturer’s recommendations with slight modifications. Spatial barcode
libraries were prepared as Cell Surface Protein Library preparations. The number of PCR cycles
used for the index PCR step in the Cell Surface Protein Library preparation (step 4.1f) for
5.5x5.5 mm TAGS arrays was 7; for 3 mm diameter TAGS arrays the number of cycles was 9.
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For the mouse brain sample, ligated pucks (see sequence in section 1.3) were used for spatial
barcoding. For this sample, a custom PCR protocol was used instead of step 4.1: 10 uL of
cleaned supernatant from step 2.3, 50 µL NEBNext High-Fidelity 2X PCR Master Mix (NEB,
M0541S), 2.5 µL STAG_P701_NEX (10 uM), 2.5 µL 10 μM P5-Truseq Hybrid oligo, 35 µL
UltraPure DNase/RNase-Free Distilled Water (Invitrogen, 10977015). In this sample, 10 PCR
cycles were performed according to the manufacturer’s recommendations.

snATAC-seq and snRNA-seq library preparation

For Slide-tags multiomic snATAC-seq and snRNA-seq experiments, 43.3 µL of counted nuclei
were loaded into the 10x Genomics Chromium controller using the Chromium Next GEM Single
Cell Multiome ATAC + Gene Expression Reagent Bundle (10x Genomics, PN-1000283). The
Chromium Next GEM Single Cell Multiome ATAC + Gene Expression CG000338 Rev F user
guide was used according to the manufacturer’s recommendations with slight modifications.
During step 4.1, 1 uL of 0.329 uM spike-in primer (5’-GTGACTGGAGTTCAGACGT-3’) was
added. For spatial barcode libraries, a custom PCR protocol was used: 5 uL of cleaned
supernatant from step 4.3, 50 µL NEBNext High-Fidelity 2X PCR Master Mix (NEB, M0541S),
2.5 µL 10 μM STAG_iP7_a1 oligo
(5’-CAAGCAGAAGACGGCATACGAGATATTTACCGCAGTGACTGGAGTTCAGACGT*G*T-3’), 2.5
µL 10 μM P5-STAG_ip5_a1 oligo
(5’-AATGATACGGCGACCACCGAGATCTACACGACAATAAAGACACTCTTTCCCTACACGACGC*
T*C-3’), 40 µL UltraPure DNase/RNase-Free Distilled Water (Invitrogen, 10977015). In this
sample, 15 PCR cycles were performed according to the protocol used in The Chromium Next
GEM Single Cell 3’ Reagent Kits v3.1 (Dual Index) with Feature Barcode technology for Cell
Surface Protein CG000317 Rev C user guide step 4.1.

T cell receptor enrichment and library preparation

We enriched TCRs from Slide-tags multiome cDNA as previously described49 with the following
modifications (https://www.protocols.io/view/slide-tcr-seq-v3-ivt-n92ldp6w8l5b/v2).

1.6 Sequencing

We sequenced scRNA-seq and spatial barcode libraries on an Illumina Nextseq 1000
instrument using a p2 100 cycle kit (Illumina, 20046811). For some libraries, resequencing was
performed to improve sequencing depth, on an Illumina Novaseq instrument using the S Prime
platform.

2 - Slide-tags data preprocessing

2.1 snRNA-seq data

We used Cell Ranger v6.1.22 mkfastq (10x Genomics) to generate demultiplexed FASTQ files
from the raw sequencing reads. We aligned these reads to either the human GRCh38 or mouse
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mm10 genome whilst including intronic reads with --include-introns, and quantified gene
counts as UMIs using Cell Ranger count (10x Genomics). For mouse embryo, human brain,
tonsil, and melanoma, we used CellBender v0.2.0 for background noise correction and cell
calling72, setting --expected-cells to the number of Cell Ranger cell calls,
--total-droplets-included to 40,000, and --learning-rate to 0.00005 (only when default
parameters were insufficient to produce cell probabilities calls of majority zero and one).

2.2 Multiomic snATAC-seq and snRNA-seq data

We used Cell Ranger-arc v2.0.2 mkfastq (10x Genomics) to generate demultiplexed FASTQ files
from the raw sequencing reads. We aligned these reads to the human GRCh38 genome , and
quantified gene counts as UMIs using Cell Ranger-arc count (10x Genomics). For the gene
expression data, we then used CellBender for background noise correction and cell calling as
described above.

2.3 Spatial barcode data

After creating demultiplexed FASTQ files, we grepped for reads containing the spatial barcode
universal primer constant sequence. We then downsampled the spatial barcode-containing
FASTQ file to 25 million reads using seqtk v1.3-r106 for computational efficiency and
consistency across runs. We then matched candidate cell barcodes in the spatial barcode
FASTQ file with true cell barcodes outputted from either Cell Ranger v6.1.2 or CellBender72

(Table S12), generating a data frame of candidate spatial barcode sequences per true cell
barcode. From this data frame, we matched candidate spatial barcode sequences with a
whitelist of in situ sequenced spatial barcodes, assigning each true spatial barcode a spatial
coordinate.

2.4 Assignment of spatial locations to nuclei

The set of spatial barcodes per cell barcode can be used for spatial positioning of nuclei. To do
so, we first read the processed barcodes into R and removed spatial barcodes with nUMI >
256 as these likely represented beads that have been dislodged from the glass slide and
encapsulated in droplets with nuclei (data not shown). We then used nUMI-weighted
density-based spatial clustering of applications with noise (DBSCAN)73,74 v1.1-11 to distinguish
“signal” spatial barcodes (those likely to provide value in positioning nuclei) from background
“noise” spatial barcodes (those likely to confound nuclei positioning). DBSCAN outputs a
cluster assignment for each spatial barcode. Cluster = 0 corresponds to “noise” spatial
barcodes without a clear spatial distribution, and cluster numbers above zero correspond to
“signal” spatial barcodes with discrete spatial distributions. We did not assign spatial positions
to nuclei with all spatial barcodes denoted noise, or to nuclei with multiple signal clusters. From
the remaining nuclei with one distinct spatial barcode signal cluster, we took an nUMI-weighted
centroid of spatial barcode coordinates in the signal cluster. DBSCAN required two parameters
as input: minPts and eps (i.e., radius). To determine the optimal parameter set for each
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Slide-tags run, we iterated through minPts parameters from minPts = 3 to minPts = 15 under a
constant eps = 50 and chose the parameter set with the highest proportion of nuclei that are
assigned a spatial position (one DBSCAN signal cluster).

2.5 T cell receptor sequences

TCR sequences were identified using MiXCR v4.1.075,76 and assigned to cell barcodes using a
hamming distance 1 collapse.

3 - Mouse brain analysis

3.1 - Quality control and cell type assignment

The output generated by Cell Ranger was read into R (4.1.1) using Seurat (4.3.0)23. We
normalised the total UMIs per nucleus to 10,000 (CP10K) and log-transformed these values to
report gene expression as E = log(CP10K + 1). We identified the top 2000 highly variable genes
after using variance-stabilizing transformation correction77. All gene expression values were
scaled and centred. For visualisation in two dimensions, we embedded nuclei in a Uniform
Manifold Approximation and Projection (UMAP)78 using the top 30 PCs, with: number of
neighbours = 40, min_dist = 0.3, spread = 15, local connectivity = 12, and the cosine distance
metric. We identified shared nearest neighbours using the top 30 principal components.
Clusters of similar cells were detected using the Louvain method for community detection,
implemented using FindClusters, with a resolution = 0.8. Each cell was then assigned a
predicted identity based on mapping to a mouse adult brain reference dataset18, using
FindTransferAnchors and then TransferData, with the first 25 PCs in both cases. For each
computed cell cluster, an identity was assigned using the highest proportion of transferred
labels, and confirmed using known markers genes

3.2 - Assessment of spatial positioning accuracy

Spatial barcode metrics calculations

We measured the accuracy of spatial positioning for the 839 cell barcodes corresponding to
high-quality mapped cells in our mouse hippocampus dataset (Figure 1). For each of these
cells, we used the spatial barcodes belonging to the DBSCAN singlet cluster and calculated
the standard error for both x and y coordinates using:

𝑆𝐸 =  σ
𝑁

Where: is the number of spatial barcode UMIs in the cluster, and is the standard deviation𝑁 σ
of each of the spatial barcode UMIs from the centroid of the cluster.
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In addition to the SE, other metrics were calculated for each DBSCAN singlet cluster. Namely,
the geometric mean distance of spatial barcodes from the centroid:

𝑥
𝑔𝑒𝑜𝑚

=
𝑖=1

𝑛

∏ 𝑥
𝑖

− 𝐶| |( )
1
𝑛

Where: is the number of spatial barcode UMIs in the cluster, and is the absolute𝑛 𝑥
𝑖

− 𝐶| |
distance between each spatial barcode UMI and the cluster centroid.

For each cell that had only a single DBSCAN cluster, additional metrics were calculated (Fig.
S2d). The total number of unique spatial barcode sequences, and spatial barcode UMIs
associated with each cell was calculated, regardless of whether it was in the singlet DBSCAN
cluster or not. The ratio of spatial barcode UMIs within and outside the DBSCAN singlet cluster
was then calculated as the proportion of signal spatial barcodes per cell.

CA1 width analysis

A serial section of the profiled region was stained using Nissl and imaged. Cells were
segmented from this image via watershed segmentation in Matlab (Release 2021b) and the
centroid of each segment was calculated. Next, these coordinates were read into R and
DBSCAN was used to isolate cells belonging to the CA1 region, with the following parameters:
eps = 35, minPts = 20. The image region was cropped to match that of the profiled Slide-tags
region. For both datasets, a 10th (Nissl) or 9th (Slide-tags) order linear model was fitted through
these points, generating a central curve. For each spatial barcode UMI, the nearest neighbour
on this curve in euclidean space was determined and the distance from these two points was
recorded as the distance from the fitted line.

3.3 - Comparison of Slide-tags snRNA-seq vs. snRNA-seq data

For each sample, cellranger was run as above, and the outputs were run through cellranger
aggr (v6.1.2), in order to account for differences in sequencing depth per cell. The result was a
combined matrix of 25,158 nuclei, with 25,107 mean reads per cell, 2,309 median UMIs per
cell, and 1,438 median genes per cell. The filtered feature-barcode matrix generated by Cell
Ranger was then read into R (4.1.1) using Seurat (4.3.0)23. We normalised the total UMIs per
nucleus to 10,000 (CP10K) and log-transformed these values to report gene expression as
E = log(CP10K + 1). We identified the top 2000 highly variable genes after using
variance-stabilizing transformation correction77. All gene expression values were scaled and
centred. For visualisation in two dimensions, we embedded nuclei in a Uniform Manifold
Approximation and Projection (UMAP)78 using the top 40 PCs, with: number of neighbours = 40,
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min_dist = 0.3, spread = 15, local connectivity = 12, and the cosine distance metric. We
identified shared nearest neighbours using the top 40 principal components. Clusters of similar
cells were detected using the Louvain method for community detection, implemented using
FindClusters, with a resolution = 1. Each cell was then assigned a predicted identity based on
mapping to a mouse adult brain reference dataset18, using FindTransferAnchors and then
TransferData, with the first 25 PCs in both cases. These cell type designations were then used
for comparative analysis going forward. Cells designated "Unk_1" or "Unk_2" were removed
from the analysis as these cells showed low quality metrics and were not interpretable labels.

4 - Mouse embryonic brain at E14 analysis

The output generated by Cell Ranger was read into R (4.1.1) using Seurat (4.3.0)23. We
normalised the total UMIs per nucleus to 10,000 (CP10K) and log-transformed these values to
report gene expression as E = log(CP10K + 1). We identified the top 2000 highly variable genes
after using variance-stabilizing transformation correction77. All gene expression values were
scaled and centred. For visualisation in two dimensions, we embedded nuclei in a Uniform
Manifold Approximation and Projection (UMAP)78 using the top 30 PCs, with: number of
neighbours = 40, min_dist = 0.3, spread = 15, local connectivity = 12, and the cosine distance
metric. We identified shared nearest neighbours using the top 30 principal components.
Clusters of similar cells were detected using the Louvain method for community detection,
implemented using FindClusters, with a resolution = 0.8. Each cell was then assigned a
predicted identity based on mapping to a mouse embryo at E14 reference dataset20, using
FindTransferAnchors and then TransferData, with the first 25 PCs in both cases. For each
computed cell cluster, an identity was assigned using the highest proportion of transferred
labels, and confirmed using known marker genes.

5 - Human brain analysis

5.1 - Quality control and cell type assignment

The output generated by Cell Ranger was filtered by CellBender and read into R (4.2.2). The
matrix was subsetted down to cells that had exactly one DBSCAN location, which were then
loaded into Seurat (4.3.0)23 to perform normalisation, finding variable features, scaling, PCA,
finding neighbours (dims=30), finding clusters, and creating a UMAP, all with default
parameters (unless specified otherwise). Each cluster was assigned a cell class (Excitatory
neuron, Inhibitory neuron, Oligodendrocyte (Oligo), Oligo precursor cell (OPC), Astrocyte,
Endothelial cell, Microglia) by plotting canonical cell type marker genes on the UMAP and
manually assigning each cluster a cell type. Clusters were removed if the average percentage
of mitochondrial reads exceeded 5% or if the top 10 differentially expressed genes between the
cluster and other clusters of the same cell type belonged to a different cell class. Subsequently,
excitatory and inhibitory neuron subtypes were mapped from a published human cortex
dataset28 by label transfer using Harmony v0.1.1 and spatially plotted in Fig. S6.
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5.2 - Identification of layers and layer-dependent gene expression

The layer assignment of each cell (L1-2, L3-5, L6, WM) was calculated by manually drawing
boundaries between the layer-specific mapped neuron subtypes and assigning each cell a
label depending on which two boundaries it was between. The numerical laminar coordinate
was then calculated by taking the Euclidean distance of each cell to the nearest boundary and
dividing it by the sum of the distances to the two neighbouring boundaries, adding a constant
factor depending on the layer assignment. Each gene was assigned a spatial variation score by
computing the kernelized density of the gene expression along the laminar coordinate using a
uniform kernel and taking the difference between the highest and lowest expression density
values (Table S1). Complex gradients were found by taking the intersection of each cell type’s
spatially variable gene list, and a visually-selected interesting subset is shown in Fig. 2l.

Gene ontology analysis was performed on all genes with a spatial variation score above 0.5
using EnrichGO from clusterProfiler 4.6.0 (default parameters) and using annotations from
org.Hs.eg.db v3.16.0 (Table S2). For display in Fig. S9, the full list was subsetted to show all
terms with an adjusted p-value <0.05 in more than one cell type and terms that did not have
ancestor GO terms with p-value <0.05 in the same cell types. For display in Fig. 2k, the terms
were further subsetted to only include terms in the Biological Process (BP) ontology with an
adjusted p-value below 0.0001 in at least one cell type.

Genes with a spatial variation score above 0.8, or above 0.55 with a minimum expression
below 1, were shown in the heatmaps in Fig. 2i-j, S5d-e. Genes with a spatial variation score
above 0.8, or above 0.60 with a minimum expression below 1 were spatially plotted in Fig.
S7-8.

6 - Tonsil analysis

6.1 - Quality control and cell type assignment

The output generated by Cell Ranger and filtered by CellBender was read into R (4.1.1) using
Seurat (4.3.0)23. We normalised the total UMIs per nucleus to 10,000 (CP10K) and
log-transformed these values to report gene expression as E = log(CP10K + 1). We identified the
top 2000 highly variable genes after using variance-stabilising transformation correction77. All
gene expression values were scaled and centred. For visualisation in two dimensions, we
embedded nuclei in a Uniform Manifold Approximation and Projection (UMAP)78 using the top
30 PCs, with: number of neighbours =30, min_dist = 0.3, spread =1, local connectivity = 1, and
the cosine distance metric. We identified shared nearest neighbours using the top 30 principal
components. Clusters of similar cells were detected using the Louvain method for community
detection, implemented using FindClusters, with a resolution = 1. Annotation of de novo
clusters was aided by marker genes and Azumith23 reference-based mapping from the human
tonsil atlas79.
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6.2 - Spatially varying gene expression

Significantly nonrandom genes were discovered in germinal centre B cells as described
previously10. Briefly, for each single-nucleus assigned as a germinal centre B cell that was
positioned in one of the four largest germinal centres we profiled, we first calculated the matrix
of pairwise Euclidean distances between cells for each germinal centre individually. We then
compared the distribution of pairwise distances between the cells expressing at least one
count of that transcript to the distribution of pairwise distances between an identical number of
cells, sampled randomly from all mapped beads within the set with probability proportional to
the total number of UMIs per cell. Specifically, we generated 1000 such random samples, and
for each sample calculated the distribution of pairwise distances. We then calculated the
average distribution of pairwise distances, averaged across all 1000 samples. Finally, we
calculated the L1 norm between the distribution of pairwise distances for the true sample of
cells and the average distribution. We defined p to be the fraction of random samples having
distributions closer to the average distribution (under the L1 norm) than the true sample. We
calculated an Z-score for the true sample given the distribution distances from the average
distribution of random samples. Finally, we aggregated p values for spatial variation from each
of the four tested germinal centres using Fisher’s method.

We intersected our computed spatially varying genes with genes previously implicated in
germinal centre zone distinction80. We calculated percent variance in gene expression space
and plotted against spatial effect size from our spatial permutation test to identify genes with
relatively low gene expression variance but high spatial variance.

6.3 - Germinal centre zonation

We used spatially varying genes (p value < 0.05) identified as described above to classify
germinal centre B cells into light zone, dark zone, and transitional states. Specifically, we
subsetted our data to germinal centre B cells, re-scaled and re-centred values, and ran PCA on
the 1068 significant spatially varying genes. We then identified shared nearest neighbours
using the top 15 principal components. Clusters of similar cells were detected using the
Louvain method for community detection, implemented using FindClusters, with resolution =
0.4. We annotated clusters as light zone, dark zone, and transitional states using marker genes
and Azumith23 reference-based mapping from the human tonsil atlas79.

After classifying germinal centre B cells into states, we spatially segmented germinal centres
into light zones and dark zones using dark zone B cell spatial density. We ran DBSCAN73 on
dark zone B cells of the two largest germinal centres, using eps = 60 and minPts = 6 for the
largest germinal centre, and eps = 60 and minPts = 10 for the second largest germinal centre.
We considered cells within the top DBSCAN cluster to constitute the dark zone and segmented
around the outer cells. The remaining cells in both germinal centres were considered to be in
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the light zone and segmentation borders were drawn accordingly. We tested for zone bias of T
follicular helper cells and follicular dendritic cells using chisq.test from the stats package in R
(4.2.2).

6.4 - Spatial receptor-ligand prediction

To detect receptor-ligand interactions between cell-type pairs, we computed a receptor-ligand
score based on a spatial correlation index81, SCI, which we defined as:

𝑆𝐶𝐼 = 𝑖
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between N cells of “sender cell type” expressing receptor r and M cells of “receiver cell type”
expressing ligand l, where expression is sctransform counts82. We defined the spatial weights
matrix of dimensionality NxM as an adjacency matrix, denoting 1 for when sender cell i is
within 100 um of receiver cell j and 0 otherwise. We first ran LIANA37 (0.1.12) to generate a
putative list of receptor-ligand interactions between cell-type pairs in a spatial agnostic way,
filtering to receptor-ligand interactions that are expressed in at least 50 cells of sender and
receiver cell types (log CPM > 0), or in 30% of sender and receiver cells. We then computed a
spatial correlation index for each receptor-ligand interaction to determine if the receptor and
ligand are spatially co-expressed in a given cell-type pair.

To determine the spatial significance of a receptor-ligand score, we employed an adaptive
spatial permutation test, running 1000 permutations for each receptor-ligand interaction. In
each permutation, we randomly permuted the spatial locations of cells within a given cell-type.
For interactions that have a nominal p value less than or equal to 0.005, we ran an additional
9000 permutations. We corrected for multiple hypothesis testing using the Benjamini-Hochberg
procedure. We also computed the log-fold change between the observed SCI statistic and the
median SCI statistic of the empirical null distribution. This allowed us to compare SCI log-fold
change values between receptor-ligand interactions for different cell types without explicitly
correcting for the number of cells of each cell type.

6.5 - Spatial contextualization of receptor-ligand interactions

To spatially contextualise receptor-ligand interactions, we decomposed spatial correlation
indices for each significant interaction between germinal centre B cells, T follicular helper cells,
and follicular dendritic cells (adj. p value < 0.05) into interaction intensity scores for individual
cells83. These decomposed scores reflect each individual cell’s contribution to the total spatial
correlation index, defined as follows for receiving cell i and vice-vera's for sender cell j:
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We tested germinal centre zone specificity via wilcox.test in R comparing interaction intensity
scores of the receptor of each cell between dark zones and light zones. We corrected p values
using the Benjamini-Hochberg method. Zone-specific receptor expression was tested using
SCTransformed expression values compared between dark zones and light zones also using
wilcox.test in R.

7 - Melanoma analysis

7.1 - Quality control and cell type assignment

snRNA-seq data

The Cell Ranger output was filtered by CellBender and read into R (4.1.1) using Seurat (4.3.0)23.
We normalised the total UMIs per nucleus to 10,000 (CP10K) and log-transformed these values
to report gene expression as E = log(CP10K + 1). We identified the top 2000 highly variable
genes after using variance-stabilising transformation correction77. All gene expression values
were scaled and centred. For visualisation in two dimensions, we embedded nuclei in a
Uniform Manifold Approximation and Projection (UMAP)78 using the top 30 PCs, with: number
of neighbours =30, min_dist = 0.3, spread =1, local connectivity = 1, and the cosine distance
metric. We identified shared nearest neighbours using the top 30 principal components.
Clusters of similar cells were detected using the Louvain method for community detection,
implemented using FindClusters, with a resolution = 1. Annotation of de novo clusters was
aided by marker genes.

Multiome ATAC & snRNA-seq data

The RNA expression matrix generated by Cell Ranger was read into R (4.1.1) using Seurat23.
The ATAC filtered feature-barcode matrix generated by Cell Ranger was read into R (4.1.1)
using Signac (1.9.0)84, and added as its own assay slot in the Seurat object containing RNA
expression counts. Peaks were recalled using the CallPeaks function, which uses MACS2
(2.2.7.1)85, across all cells. Fragments were mapped to the MACS2-called peaks and assigned
to nuclei using the FeatureMatrix function in Signac. Peaks in non-standard chromosomes were
removed using keepStandardChromosomes from GenomeInfoDb (1.35.15)86, and problematic
regions of the hg38 genome were removed using subsetByOverlaps according to the blacklist
available at: https://github.com/Boyle-Lab/Blacklist87. This final peaks-barcode matrix was then
added to the “peaks” assay within the Seurat object.
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For cell type annotation, the snRNA-seq data from the multiome experiment was normalised for
the total UMIs per nucleus to 10,000 (CP10K) and log-transformed to report gene expression
as E = log(CP10K + 1). The top 2000 highly variable genes were identified after using
variance-stabilising transformation correction77. We then integrated the gene expression data
from Slide-tags multiome with gene expression data from Slide-tags snRNA-seq using
SelectIntegrationFeatures, FindIntegrationAnchors, and IntegrateData across all features with
default parameters from Seurat (4.3.0). Integrated gene expression values were scaled and
centred. For visualisation in two dimensions, we embedded nuclei in a Uniform Manifold
Approximation and Projection (UMAP)78 using the top 30 PCs, with: number of neighbours =30,
min_dist = 0.3, spread =1, local connectivity = 1, and the cosine distance metric. We identified
shared nearest neighbours using the top 30 principal components. Clusters of similar cells
were detected using the Louvain method for community detection, implemented using
FindClusters, with a resolution = 1. Cells from Slide-tags multiome were annotated based on
marker genes and co-clustering with Slide-tags snRNA-seq cells. Gene expression counts from
Slide-tags multiome were re-scaled and re-cluster as described above using the non-integrated
object for subsequent analyses.

7.2 - Inferring copy number variation

InferCNV (1.3.3) was used to infer large-scale copy number variation from standard snRNA-seq
data and from snRNA-seq data from a 10x multiome experiment as previously recommended
(inferCNV of the Trinity CTAT Project, https://github.com/broadinstitute/inferCNV).
CellBender-corrected counts were extracted from annotated Seurat objects, where normal
reference cells were specified as all cells not labelled as tumour. InferCNV was run under the
following parameters: cutoff = 0.1, cluster_by_groups = T, denoise = T, HMM = T, num_threads
= 60.

7.3 - T cell receptor analysis

TCR analyses focused on CD8 T cells where we used Fisher’s exact test to test if: (1) the beta
chain sequence CASRASNEQFF was tumour compartment biassed compared against all CD8
T cells with profiled beta chains, where tumour compartment segmentation was performed
manually based on tumour subpopulation density; and (2) paired CD8 T cells with TCR alpha
chain CAEWYNQGGKLIF and beta chain CASRASNEQFF were tumour compartment biassed.

7.4 - ATAC analysis

Latent semantic indexing (LSI) was performed on the peaks assay using Signac, with the
RunTFIDF and RunSVD functions. For visualisation in two dimensions, we embedded nuclei in
a Uniform Manifold Approximation and Projection (UMAP)78 using LSI dimensions 2-30. Nuclei
were visualised using the combination of modalities profiled, with weighted-nearest neighbour
(WNN) analysis. Multimodal neighbours were identified using Seurat’s
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FindMultiModalNeighbors function, with the RNA PCA dimensions 1:50, and the ATAC LSI
dimensions 2:50. These neighbours were then used as input into RunUMAP for visualisation.

In order to annotate the motifs present in peaks, the Signac function CreateMotifObject was
used to create a motif object, with all human motifs from the Jaspar 2020 database. Motif
accessibility z-scores were then calculated using Signac’s RunChromVAR function (ChromVAR
1.16.0). Gene activity scores were calculated using the Signac function GeneActivity. We
normalised these gene scores by the total gene score per nucleus to the median nUMI for the
RNA assay (NGS) and log-transformed these values to report gene expression as
E = log(NGS + 1).

7.5 - Differential gene expression, differential chromatin gene scores, and gene set
enrichment analysis
Differential gene expression analyses were performed using the MAST implemented in
FindMarkers from Seurat88. Analysis comparing tumour cluster 1 and tumour cluster 2 from
Slide-tags snRNA-seq and comparing compartment-specific CD8 T cells from Slide-tags
multiome data used min.pct = 0.25 and log2fc.threshold = 0.25. Analysis comparing tumour
cluster 1 and tumour cluster 2 from Slide-tags multiome data used min.pct = 0.1 and
log2fc.threshold = 0.25. Gene ontology biological process (GO_Biological_Process_2021) gene
set enrichment analysis was performed with the Enrichr package (3.1) in R89–91 on tumour
cluster 2 enriched differentially expressed genes with log2FC < -0.5 and adjust p value < 0.05.
Differential chromatin gene score analysis was conducted using the Wilcoxon Rank Sum test
implemented in FindMarkers from Seurat with min.pct = 0.1 and log2fc.threshold = 0.

7.6 - Melanocytic-like and mesenchymal-like signatures

We scored tumour cells on melanocytic-like and mesenchymal-like signatures using
AddModuleScore in Seurat with a list of genes adapted from previous work (Table S13)50,92.
Correlations of chromVar motif scores with mesenchymal scores were tested using Pearson’s
correlation coefficient and p values were corrected using the Benjamini-Hochberg procedure.
Spatial autocorrelations of chromVar motifs were tested using Moran.I from the ape package
(5.6-2) in R93, where the weights matrix was specified as 1/distance2.
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Supplementary Material

Supplementary Figures

Supplementary Figure. 1: Cell type assignment and spatial mapping in the mouse
hippocampus. a, Expression of marker genes by cell type cluster. b, Spatial positions of each
cell by cell type cluster. All scale bars denote 500 μm. CA1 = Cornu Ammonis area 1, CA3 =
Cornu Ammonis area 3.
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Supplementary Figure. 2: Assessing the mapping of single nuclei using spatial barcodes
in the mouse hippocampus. a, Each recovered spatial barcode is shown coloured by the
number of detected UMIs. b, The proportion of nuclei mapped for each minPts parameter
tested in DBSCAN. c, The proportion of cells that are assigned to each number of DBSCAN
clusters. d-e, Violin plots showing different spatial barcode metrics for every cell that is a
spatial singlet. f, Violin plot showing the proportion of spatial barcode UMIs that are assigned
to the DBSCAN singlet cluster (signal) vs. all other spatial barcode UMIs recovered for that cell.
g, Violin plot showing the mean radial distance for spatial barcodes for each spatial singlet
cluster. h, plot showing the concentration of oligos released by time under illumination at the
same light source power, for each bead type used in Slide-tags experiments. The time used for
cleavage for each bead type is shown with the dotted lines. Scale bar denotes 500 μm.
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Boxplots show: centre line, median; box limits, upper and lower quartiles; whiskers, 1.5x
interquartile range; points, outliers.

Supplementary Figure. 3: Spatial resolution measurements in the mouse hippocampus. a,
A 10 um nissl-stained section (left) was taken adjacently to the Slide-tags profiled section
(right). b, The CA1 cells were subsetted in each case and a line was fitted to measure the
midpoint of this structure. Orthogonal distances from this midpoint were then calculated and
points are coloured by this distance. c, Violin plots showing the distribution of distances from
the fitted line in b. Boxplots show: centre line, median; box limits, upper and lower quartiles;
whiskers, 1.5x interquartile range; points, outliers. All scale bars denote 500 μm.
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Supplementary Figure. 4: Slide-tags snRNA-seq applied to the embryonic mouse brain at
E14. a, Schematic of Slide-tags snRNA-seq on a 3 mm diameter region of the embryonic
mouse brain at E14. b. A haematoxylin and eosin stained section which was adjacent to the
profiled section. c. UMAP embedding of snRNA-seq profiles coloured by cell-type annotations.
d. Spatial positions of cells coloured as in C. e. Spatial marker gene expression. Expression
counts for each cell were divided by the total counts for that cell and multiplied by 10,000, this
value + 1 is then natural-log transformed. f. Comparison metrics plotted for Slide-tags
snRNA-seq on the mouse E14 embryonic brain. * = XYZeq was not performed on embryonic
mouse brain at E14 and so these metrics may not be directly comparable due to tissue-specific
effects. All scale bars denote 500 μm.
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Supplementary Figure 5. Slide-tags snRNA-seq applied to the human brain enables
spatial mapping of cell types and cell-type specific spatially varying gene expression. a,
Individual plots of per-cell type spatial distribution. b, Dotplot showing the marker genes used
to assign cell types to clusters. c, The gene expression distribution of three canonical layer
marker genes in excitatory neurons. d,e, A 1D gene expression heatmap for genes in inhibitory
neurons and astrocytes. All scale bars represent 500 µm. Oligo = Oligodendrocyte, OPC =
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Oligodendrocyte precursor cell, Astro = Astrocyte, INH = Inhibitory, EX = Excitatory, GM = Grey
matter, WM = White matter. Gene names and details in Supplementary Table 1.
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Supplementary Figure 6. Slide-tags snRNA-seq in the human brain enables mapping of
neuron sub-cell-types. a, Excitatory neuron subtypes plotted by spatial location. b, Inhibitory
neuron subtypes plotted by spatial location. Subtype names from Bakken et al., 2021.
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Supplementary Figure 7. Slide-tags snRNA-seq in the human brain reveals cell-type
specific spatial gradients of gene expression in neurons. Spatially varying genes identified
in: a, Excitatory neurons, b, Inhibitory neurons
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Supplementary Figure 8. Slide-tags snRNA-seq in the human brain reveals cell-type
specific spatial gradients of gene expression in non-neuronal cell types. Spatially varying
genes identified in: a, Astrocytes, b, Oligodendrocyte Precursor Cells (OPCs).
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Supplementary Figure 9. Gene Ontology Enrichment of cell-type specific spatial gradient
genes revealed by Slide-tags snRNA-seq in the human brain.
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Supplementary Figure 10. Receptor-ligand prediction from Slide-tags human tonsil data.
a, Expression of select marker genes by cell type cluster. b, Spatial mapping of cell types. c,
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Scatter plot of gene expression variance not explained by count noise and spatial permutation
effect size of previously reported dark zone and light zone marker genes. d, Spatial mapping of
dark zone, light zone, and transitional germinal centre B cells in two representative germinal
centres. e, Volcano plot of receptor interaction intensity scores compared between zones in
two representative germinal centres. All scale bars denote 500 μm. T double neg = T double
negative, mDC = myeloid dendritic cells, pDC = plasmacytoid dendritic cells.
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Supplementary Figure 11. Slide-tags snRNA-seq on human melanoma. a, Schematic
representation of Slide-tags snRNA-seq on a 3 mm circular region of a human melanoma
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lymph node metastasis. b, UMAP embeddings of snRNA-seq profiles coloured by cell type. c,
Spatial mapping of cell types. d, Adjacent H&E-stained section of the profiled region. e, Spatial
mapping of profiled cell types. f, Expression of select marker genes by cell type cluster. g,
Inferred copy number alterations from transcriptomic data. NT indicates a representative subset
of non-tumour cells. All scale bars denote 500 μm. T reg = T regulatory cells, mDC = myeloid
dendritic cells, Mono-mac = monocyte-derived macrophages, pDC = plasmacytoid dendritic
cells.
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Supplementary Figure 12. Slide-tags multiome on human melanoma. a, Mean TSS
enrichment score. b, Violin plots of log10-transformed unique fragments and fraction of reads in
peaks (FRiP) percentage. Boxplots show: centre line, median; box limits, upper and lower
quartiles; whiskers, 1.5x interquartile range; points, outliers. c, Weighted nearest neighbour
UMAP embeddings of snRNA-seq and snATAC-seq profiles coloured by cell type. d, Spatial
mapping of cell types. e, ATAC sequence track and gene expression violin plot of MLANA and
CCL5 across cell types. f, TCR pairing chord plot of alpha and beta chain pairing frequencies in
CD8 T cells. g, Differential gene expression volcano plot between CD8 T cells in tumour
compartment 1 vs tumour compartment 2. h, Scatter plot of melanocytic-like scores and
mesenchymal-like scores of tumour cluster 1 cells in tumour compartment 1. Pearson’s r value
is reported. i, Mesenchymal-like cell state score spatial distribution. j, Spatial distribution of
JUNB and MITF chromVAR motif scores. All scale bars denote 500 μm. T reg = T regulatory
cells, mDC = myeloid dendritic cells, Mono-mac = monocyte-derived macrophages.
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Supplementary Figure 13. Differential gene expression and gene set enrichment analysis
between tumour cluster 1 and 2. a, Volcano plot of differentially expressed genes comparing
tumour cluster 1 against tumour cluster 2 from the Slide-tags snRNA-seq run. b, Gene
ontology biological process (GO_Biological_Process_2021) gene set enrichment analysis on
genes upregulated in tumour cluster 2 (negative log2FC) compared with tumour cluster 1 from
the Slide-tags snRNA-seq experiment.
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Supplementary Tables

Supplementary Table 1. Per-celltype gene list ranked by spatial variation, human cortex

Supplementary Table 2. GO enrichment analysis results, human cortex

Supplementary Table 3. Spatial varying genes in germinal centres, human tonsil.

Supplementary Table 4. Spatial effect size from spatial varying gene expression results and
percent variance in gene expression, human tonsil.

Supplementary Table 5. Receptor-ligand interaction prediction results, human tonsil.

Supplementary Table 6. Germinal centre zone enrichment test of receptor-ligand interactions,
human tonsil.

Supplementary Table 7. Compartment-specific T cell receptor sequences of CD8 T cells,
human melanoma.

Supplementary Table 8. Differential gene expression between CD8 T cells in tumour
compartment 1 and tumour compartment 2 from Slide-tags multiome performed on human
melanoma.

Supplementary Table 9. Differential gene expression between tumour cluster 1 and tumour
cluster 2 from Slide-tags snRNA-seq performed on human melanoma.

Supplementary Table 10. Differential gene expression (x) and differential chromatin gene
scores (y) between tumour cluster 1 and tumour cluster 2 from Slide-tags multiome performed
on human melanoma.

Supplementary Table 11. Spatial autocorrelation of ChromVAR transcription factor motifs
correlated with mesenchymal-like scores in tumour cluster 1, human melanoma.

Supplementary Table 12. Metadata and data pre-processing details for each Slide-tags
experiment.

Supplementary Table 13. Mesenchymal-like and melanocytic-like genes used to score tumour
cells, human melanoma.
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