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Droplet-based single-cell assays, including single-cell RNA sequencing

(scRNA-seq), single-nucleus RNA sequencing (snRNA-seq) and cellular
indexing of transcriptomes and epitopes by sequencing (CITE-seq),
generate considerable background noise counts, the hallmark of which
isnonzero counts in cell-free droplets and off-target gene expressionin

unexpected cell types. Such systematic background noise can lead to batch
effects and spurious differential gene expression results. Here we develop
adeep generative model based on the phenomenology of noise generation

indroplet-based assays. The proposed model accurately distinguishes
cell-containing droplets from cell-free droplets, learns the background
noise profile and provides noise-free quantification in an end-to-end
fashion. We implement this approach in the scalable and robust open-source
software package CellBender. Analysis of simulated data demonstrates

that CellBender operates near the theoretically optimal denoising limit.
Extensive evaluations using real datasets and experimental benchmarks
highlight enhanced concordance between droplet-based single-cell data
and established gene expression patterns, while the learned background
noise profile provides evidence of degraded or uncaptured cell types.

Droplet-based assays have enabled transcriptome-wide quantifica-
tion of gene expression at the resolution of single cells* In a typical
scRNA-seq experiment, a suspension of cells is prepared and loaded
intoindividual droplets. PolyA-tailed mRNA speciesineach dropletare
uniquely barcoded and reverse transcribed, followed by PCR amplifica-
tion, library preparation and ultimately sequencing. Quantifying gene
expressionineach cellis achieved by identifying and counting unique
cDNA fragments that have a particular droplet barcode. The differen-
tial PCR amplification bias on different molecules can be reduced by

using unique molecular identifier barcodes (UMIs) and counting the
number of unique UMIs as a proxy for unique endogenous transcripts.
This countinformation is then summarized in a count matrix, where
counts of each gene are recorded for each cell barcode. The count
matrix is the starting point for downstream analyses such as batch
correction, clustering and differential expression®*. In addition to
cellular mRNA, other cell-endogenous molecules or incorporated
perturbations (hereafter referred to as cell ‘features’ for brevity) can
be assayed using a similar set-up by conjugating the desired feature
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with a cellular barcode. Examples include CITE-seq’, Perturb-seq®,
scCAT-seq’, SNARE-seq®, SHARE-seq’, ECCITE-seq'’and 10x Multiome,
among many other recently introduced droplet-based assays.

To reduce the rate of events in which multiple cells are encapsu-
lated in the same droplet, the cell suspensionis appropriately diluted,
and, asaresult, atypical droplet-based single-cell experiment produces
hundreds of thousands of cell-free droplets. In an ideal scenario, a
cell-freedropletis expected tobe truly devoid of capturable molecules,
whereas a cell-containing droplet will yield features originating only
from the encapsulated cell. Inreality, however, neither expectation is
met. Onthe one hand, the cell suspension contains alow-to-moderate
concentration of cell-free mRNA molecules or other capturable fea-
tures (Fig.1a), which leads to nonzero molecule counts evenincell-free
droplets” (Fig. 1b). These cell-free molecules, also referred to as ‘ambi-
ent’molecules, have their originin either ruptured or degraded cells,
residual cytoplasmic debris (for example, in snRNA-seq) or exogenous
sources such asunbound single-stranded DNA-conjugated antibodies
or sample contamination. Onthe other hand, the shedding of capture
oligonucleotides by beadsin microfluidic channels as well as the forma-
tion of spurious chimeric molecules during the bulk mixed-template
PCR amplification'>" effectively lead to ‘swapping’ of transcripts and
barcodes across droplets. The severity of these problems depends
on the tissue isolation protocol as well as library-preparation steps,
including purification, size selection, PCR amplification condition-
ing and the number of cycles'. For a more thorough discussion, see
Supplementary Section1.1.

Mixed-species experiments provide a direct demonstration of
the effects of systematic background noise, as shownin Fig. 1c, where
an experiment with a mixture of human and mouse cells is observed
to have hundreds of off-target human transcripts in all droplets that
contain mouse cells (inset), when ideally, mouse cell-containing drop-
lets would have zero human transcripts (excluding doublets, where
two cellsare capturedinone droplet). The issue of background counts
is particularly problematic in snRNA-seq. The harsh nuclear isolation
protocols produce a substantial number of ruptured nuclei and a high
concentration of cytoplasmic RNA in the suspension (Fig. 1d, green
dots). Insevere cases, the typical total UMI-count distinction between
droplets with and without nucleinearly disappears and all droplets lie
onacontinuum of counts. In such situations, successful downstream
analysis hinges on our ability to (1) distinguish empty from non-empty
dropletsand (2) correctly recover the counts from encapsulated cells
or nuclei while removing background counts.

The presence of background counts can reduce both the mag-
nitude and the specificity of differential signal across different cell
types. In casesin which quantitative accuracy or specificity isrequired,
for example, for identification of exclusive marker genes as a part of
drugtarget discovery or the study of subtle phenotypic alterationsin
acase-control setting, background counts can obscure or even com-
pletely mask the signal of interest. In some experiments, extremely
high expression of a particular gene in one cell type can giveriseto a
large amount of background, making it seem as though all cells express
the gene at alow level. This issue is common to antibody features in
CITE-seq and single-guide RNA CRISPR guides in Perturb-seq.

As the field of single-cell omics is rapidly extending beyond
unimodal measurements and toward multimodality”, the issue of
systematic background noise remains a ubiquitous artifact that nega-
tively impacts all such assays, regardless of the measured feature.
A general-purpose in silico mitigation strategy is therefore expected
tobe of wide applicability. Here, we introduce a deep generative model
forinferring cell-free and cell-containing droplets, learning the back-
ground noise profile and retrieving uncontaminated counts from
cell-containing droplets. Our proposed algorithm operates end-to-end
starting from the raw counts, is fully unsupervised, is agnostic to the
nature of the measured molecular feature (for example, mRNA, protein
and so on) and requires no assumptions or prior biological knowledge

of either cell types or cell type-specific gene expression profiles.
A major challenge in distinguishing background noise counts from
biological counts for single droplets is the extreme sparsity of counts,
such that, without a strong informative prior, the counts obtained
from a single droplet do not provide sufficient statistical power to
allow inference of background contamination. Here, we use a neural
network to learn the distribution of gene expressionacross all droplets.
Thelearned distribution acts as a prior over cell-endogenous counts,
provides amechanismto share statistical power between similar cells
and ultimately improves the estimation of background noise counts.
Learning this neural prior of cell states and estimating the background
noise profile is performed simultaneously and self-consistently withina
variational inference framework, allowing progressively improved sep-
aration of endogenous and background counts during model training.

We present extensive evaluation of our algorithm on both simu-
lated and real datasets (whole-cell, single-nuclei, mixed-species and
CITE-seq datasets). We show that (1) our method is superior to the cur-
rently existing methods in distinguishing empty and cell-containing
droplets, in particular, in ambiguous regimes and challenging
snRNA-seq datasets, and (2) our method successfully learns and sub-
tracts background noise counts from cell-containing droplets and
leads to substantially increased amplitude and specificity of differ-
ential expression, both for RNA and CITE-seq antibody counts and
increases the correlation between the two modalities. Benchmarking
on mixed-species sSCRNA-seq experiments demonstrates that Cell-
Bender removes the majority of off-target cross-species counts. Experi-
ments using simulated noisy datasets with known ground truth show
that CellBender operates close to the theoretically optimal limit.

Our method is made available asa production-grade, easy-to-use
command-line tool (Fig. 1e,f). We use the Pyro probabilistic program-
ming framework® for Bayesian inference. Graphics processing unit
(GPU) acceleration is necessary for fast operation of this method. We
refer to this method as remove-background, which constitutes the first
computational modulein CellBender, an open-source software pack-
age developed by the authors for preprocessing and quality controlling
single-cell omic data. Several community-standard file formats, includ-
ing CellRanger, DropSeq, AnnData" and Loom, are accepted as input.
CellBender workflows are available on Terra (https://app.terra.bio),
asecureopen platform for collaborative omic analysis and canbe run
onthe cloud ona GPU with zero set-up.

Since the time our method was first made available as an
open-source project in 2019, it has been extensively used by the
single-cellomic community in several large-scale studies, including pri-
mary research articles on the mouse brain'®, human brain organoids®,
humanintestine?®, human heart?**, humanand mouse adipocytes®?,
several recent studies on severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) in human tissues*>'and alarge snRNA-seq human
cross-tissue atlas®. Background noise removal remains a crucial step in
single-cell data analysis, and other authors have developed methods
for remedying ambient RNA as well, including SoupX" and a method
for removing chimeric reads®. In particular, DecontX by Yang et al.*
isanother principled method, which we benchmark together with our
method here.

Results

A generative model for noisy droplet-based count data

We build a probabilistic model of noise-contaminated single-cell data
by examining the key steps of the data-generation process from first
principles, including droplet formation and cell encapsulation, reverse
transcription, PCR amplification and the consequent ambient mol-
eculesand chimericlibrary fragments. These mechanisms, along with
the empirical evidence for each, are discussed in detail in Supplemen-
tary Section1.1. Asimplified schematic of our modelis showninFig.1g,
along with the formal probabilistic graphical modelin Fig. 1h. Our gen-
eral approach to modeling is discussed in the ‘Why a deep generative
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Phenomenology of ambient RNA
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Fig.1| The phenomenology of ambient RNA and its deep generative
modeling using CellBender remove-background. a, Cell dissociation and
nucleus extraction lead to the presence of cell-free RNA in solution. b, Schematic
diagram of the proposed source of ambient RNA background counts. Cell-free
‘ambient’ RNA (black lines) and other cellular debris are present in the cell-
containing solution, and this RNA is packaged up into the same droplet as a cell
(red) or into an otherwise empty droplet that contains only abarcoded capture
oligonucleotide bead (green hexagon). ¢, Unique UMI counts per droplet that
map to human and mouse genes for the publicly available hgmm12k dataset
from 10x Genomics. The experiment is a mixture of human and mouse cells, and
theinset (red box) shows that there are hundreds of human counts in droplets
that contain mouse cells. d, The snRNA-seq Wistar rat heart dataset rat6k,
showing unique UMI counts per droplet (black) with the fraction of reads from
exonicregions superimposed (green). The ‘ambient plateau’ is the region of
therank-ordered plot with ranked barcode ID greater than about 15,000, where

there are approximately 100 unique UMI counts per droplet. The increase in the
fraction of exonic mapped reads coinciding with the onset of cell-free droplets
shows that, in snRNA-seq, ambient RNA is enriched for cytoplasmic material,
where fewer intronic reads remain due to splicing. e, Running CellBender is as
simple as sending a raw count matrix in and receiving a corrected count matrix in
return. f, Additional useful outputsinclude inferred latent variables of the model,
such as the ambient RNA profile, probabilities that each dropletis not empty, a
low-dimensional embedding of gene expression per cell and asummary report.
PC, principal component. g, Schematic diagram explaining the rationale for our
model. ‘True’ cell counts are modeled using a flexible prior parameterized by a
neural network NN,. These counts (if a cell is presentin a given droplet) are added
to two constant noise sources: ambient background noise and bulk background
noise. h, The generative model for count data in the presence of background
RNA, where circles represent latent random variables, the diamond represents a
deterministic computation, and thefilled circle ¢, represents observed counts.

model?’ section. We review key elements of the probabilistic modelin
this section and refer the reader to Methods for details.

Our starting point is the observed feature count matrix c,,,, where
nandgdenote cellindex and featureindex (for example, gene), respec-
tively. We interpret ¢, as the sum of two non-negative contributions:
the true biological counts originating from cells cf,g" and the back-

ground noise counts cj2*¢. The background noise counts are drawn
froma Poisson distribution:

ngise ~ Poisson | (1-p,) €, d‘fzmeZI +Pn€n O’ndf;e” + d‘,;mp))\_’g , (@

ambient noise rate

barcode swapping
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where the noise rate stems from two distinct processes: physically
encapsulated ambient molecules and barcode-swapped molecules,
forexample, PCR chimeras. The ambient rateis determined by alearn-
able ambient profile x?, the droplet size factor d2*" and the
droplet-specific capture efficiency factor €,. We model barcode swap-
ping as a diffusion process with a droplet-specific rate p, that is addi-
tionally modulated by the total amount of physically captured
moleculesinthedroplet, thatis, €, (y,d<e" + d9™°P),and the dataset-wide
average gene expression (‘pseudo-bulk’) Xg-Here,y, € {0, 1}isabinary
variable thatindicates cell presence in the droplet, and d<''is the cell
size factor.

The truebiological counts cf,z,” aremodeled as anegative binomial
(NegBinom) distribution with arate that depends on droplet-specific
captureefficiency ¢,, thenon-chimericfraction1- p,, the cell-presence
indicatory,, the cell size factor d°®'and a prior on true gene expression
rate of the cell, ,,[z,]:

el z, ~ NegBinom (1 - p) €, Y, A5 XnglZ,), 2] ()

Here, @ is aglobal learnable overdispersion parameter that modu-
lates the uncertainty of the cell gene expression prior, and z,is a
droplet-specific latent variable that determines the gene expression
rate prior x,,. Crucially, the way in which we construct this prior is one
ofthe components that makes our model unique among noise-removal
approaches for count data. We use a neural network to learn a flex-
ible prior for biological counts, which is realized as a deformation of
alow-dimensional Gaussian latent space, z, (Fig. 1g). We fit the model
using the stochastic variational inference (SVI) technique and leverage
additional‘encoding’ neural networks for amortizing the approximate
inference of droplet-specific (‘local’) latent variables (Extended Data Fig.
1b). Puttogether, our framework resembles a variational auto-encoder**
within a structured probabilistic model of noisy single-cell data.

We use the probabilistic programming language Pyro' to imple-
mentour model and the approximate variational inference algorithm.
Our choice of variational posterior is shown graphically in Extended
DataFig. 1b, and details are provided in the Inference section.

Constructing a denoised integer count matrix

CellBender generates several outputs following modelfitting and infer-
ence, including the learned profile of ambient noise, cell containment
probability per droplet, the low-dimensional latent space representa-
tion of cell states and importantly, the estimated denoised integer
count matrix c,,g It is worth emphasizing that our sought-after
denoised count matrix c,,g" isnotobtained by decoding the underlying
low-dimensional latent embeddings of observed counts. Thisisa fun-
damental difference between our approach and variational
auto-encoder-based denoising and imputation methods™*:encoding
into and out of a low-dimensional latent space acts as an information
bottleneck, smooths the datato varying degrees and potentially masks
subtle biological features such as transcriptional bursting, infrequent
cell states and other rare fluctuations of potential functional impor-
tance.Inour approach, the low-dimensional latent space of cell states
actsasaprior, which, together with the observed data, determines the
Bayesian posterior P(Cig"™® | {Cag}) . We estimate an integer matrix of
likely noise counts, (o™, from thelatter and obtain the denoised counts
by subtracting off noise counts from observed counts.

Given the explicit partitioning of the observed data as a sum of
non-negative signal and noise contributions, our approach explicitly
guarantees the following: (1) each entry in the output count matrix will
belessthanorequaltothe correspondingentryinthe raw input matrix

¢, (2) theresults arelargely insensitive to the representational capacity
of the encoding and decoding neural networks; (3) importantly, ina
cleandatasetinwhich ézgse — 0, weobtain c‘ffg" — Cpg, thatis, the data
are notdeformed, smoothed orimputed. Our conservative approach
to denoisingis crucial for safe operation of our method in automated

analysis pipelines, in particular, in application to clinical data and refer-
ence atlas-building efforts.

Any noise-removal algorithminvolves a tradeoff between remov-
ing actual noise (sensitivity) and retaining signal (specificity). In Cell-
Bender, we control this tradeoff by means of a user-defined ‘nominal
false positive rate’ (nFPR) parameter (‘Estimating the integer noise
matrix as amultiple-choice knapsack problem’). The nFPR parameter
provides a transparent and interpretable handle to impose an upper
bound onthe amount of erroneously removed signal countsin aggre-
gate (‘false positive’ counts), which could be either imposed separately
on each feature or globally. Larger nFPR values imply removing more
noise at the expense of more signal. The ability to control denoising
nFPR, regardless of the inherent noise of a given dataset, is desirable
forintegrative analysis of heterogeneous datasets such as from clinical
patient samples generated at multiple centers?.

Finally, we note that reducing the posterior distribution of noise
counts, p(c"Oise | {Cng}) Whichis the natural output of a Bayesianmodel,
toaninteger pointestimate, (oo, is anon-trivial and subtle task. The
widely used maximum a posteriori (MAP) estimator
Cng = argmax p(cho® | {c,,}), even though it is a canonical Bayesian
choice, leads to systematic underestimation of noise counts for genes
thatare presentinthe ambient profile at low levels (‘On the asymptotic
bias of canonical Bayes estimators’). Meeting the specified total noise
target implied by nFPR while attaining the maximum model-based
posterior probability turns the estimation of ¢y into a secondary
optimization problem. We discuss and evaluate several such estimation
algorithms in Extended Data Figs. 9 and 10 and the accompanying
Methods section ‘Constructing the denoised integer count matrix:
preliminaries’. By default (as of CellBender version 0.3.0_rc), we use a
constrained estimator that is formally equivalent to the multiple-choice
knapsack problem (MCKP), which we show is exactly solvable using a
fastand greedy coordinate-ascent algorithm under mild assumptions
(‘A fast and exact MCKP solver for strictly log-concave posterior
distributions’).

Increased marker specificity and lower off-target expression
Removal of systematic noise froma dataset results in clearer biological
insights by enhancing the specificity of gene expression and reducing
spurious off-target counts. We demonstrate this by preprocessing
scRNA-seq and snRNA-seq datasets with CellBender before downstream
analysis and assessing the biological soundness of the results.

We carried out a standard analysis workflow on the publicly
available peripheral blood mononuclear cell (PBMC) scRNA-seq
dataset (pbmc8k) from 10x Genomics using SCANPY". We identified
cell-containing droplets as having posterior cell probability g, > 0.5,
and we used these cells in analyzing raw data and data preprocessed
with CellBender. We further filtered cells using cutoffs for the number
of nonzero genes, percent mitochondrial counts and an upper limit
for UMI counts (‘Single-cell analysis workflow and cell quality-control
details’). The results of the exact same analysis, with and without Cell-
Bender preprocessing, are showninFig.2a-d, including the expression
of severalimmune marker genes.

Raw gene expression data, as shown in Fig. 2b, indicate that the
genes SIO0AS8,SI00A9,LYZ,CST3and PTPRCare found to be abundantly
and ubiquitously expressed in all clusters. While CD45 (encoded by
PTPRC) is a glycoprotein expressed on all nucleated hematopoietic
cells,LYZand CST3areknown to be specific markers for monocytes and
plasmacytoid dendritic cells (pDCs), whereas SIO0OA8 and SIO0A9 are
known to be specific markers of neutrophils, monocytes and pDCs***
(Supplementary Fig.2). We hypothesized that the off-target expression
of these genes was a result of systematic background noise. Figure 2d
shows the denoised counts obtained using CellBender at nFPR = 0.01
and demonstrates both sensitivity and specificity of CellBender: on
the one hand, we observe that the expression of SI00A8, SI00A9 and
LYZisnow largely concentrated on monocytes and pDCs, as expected.
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Human PBMC scRNA-seq background noise removal using CellBender
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Fig. 2| Evaluation of CellBender on aPBMC dataset, showing a standard
SCANPY analysis of the publicly available 10x Genomics dataset pbmc8k
with and without CellBender. a,c, UMAP visualizations of the raw data (a) and
the data preprocessed with CellBender (c). Baso., basophil; neutro., neutrophil;
NK, natural killer cell; T, regulatory T cell; MAIT, mucosal-associated invariant
T cell; monocyte C, classical monocyte; monocyte NC, non-classical monocyte.
b,d, The dot plots display the expression of pre-defined marker genes for PBMCs
for the raw dataset (b) and the dataset processed with CellBender (d). Monocyte
NC/1, non-classical/intermediate monocyte; SDPRis an alias for CAVIN2 gene.

e, Removal of each gene has been mapped to cell type, indicating that cell types
do not necessarily contribute equally to ambient RNA. All genes expressed at

TPM =10 (N = 6,678) have been assigned to one of six bins, and the bins linearly
span the full range of the estimated fraction of ambient contamination. The
ambient removal bins contain N =4,467 (7-4%),N=2,171 (11-7%), N =30 (15-11%),
N=8(18-15%),N=1(22-18%) and N=1(41-37%) genes, respectively. The box plot
for each bin and cell type indicates the interquartile range of the probability that
the assigned genes are stemming from that cell type. The center line denotes the
median, and the whiskers correspond to 1.5 times the interquartile range. mDC,
myeloid dendritic cell. f-h, UMAP plots of the expression of LYZ, IGKC and HLA-
DRAin each cell before and after CellBender. Colored bar axes are truncated at
the 80th percentile of per-cell expression.

Conversely, we note that the biologically expected ubiquitous expres-
sion of PTPRC has remained unchanged. Extended Data Fig. 2 shows
expression of LYZacross clusters before and after CellBender in more
detail. Supplementary Table 1 shows the differential expression of
S100A8,5100A9,LYZ and CST3between monocytes C (cluster O, where
expressionis expected) and naive B cells (cluster 4, where expression
is not expected), calculated as the log, (fold change) (LFC) using a
Wilcoxon test. The LFCs increase by a factor of two after subtracting
background RNA; by contrast, the LFC of PTPRC hardly changes at all.
Another visualization of the effect of background noise removal is
shown in Fig. 2f-h, in which expression of LYZ (increased specificity
for monocytes), IGKC (increased specificity for B cells) and HLA-DRA
(increased specificity for both monocytes and B cells) are plotted per
cell before and after CellBender. The increase in specificity is striking
forthese and many other examples (for example, Extended Data Fig. 3).

Next, we explored the origin of background counts in the PBMC
dataset. Note that neutrophils and other granulocytes are absent from
10x PBMC cell clusters. The difficulty of capturing granulocytes is
attributed to their sensitivity to rapid degradation after collection
and poor isolation via density gradient centrifugation. As such, we

hypothesized that ambient counts might be enriched with granulocyte
lysates. To test this hypothesis, we examined the fraction of counts
removed by CellBender for each gene and accordingly assigned each
genetotheblood cell type with the highest consensus normalized tran-
scripts per million (TPM) expression value obtained from the Human
Protein Atlas immune reference®. We binned the genes according to
the fractionremoved by CellBender as ambient noise and interpreted
the empirical frequency of assigning different cell types to the genes
within each bin as the probability of contributing to the ambient soup.
The resultis shownin Fig. 2e and indicates that genes in the top-most
ambient removal bins are associated with granulocytes at a substan-
tially higher frequency. The top and bottom ten genes ranked by Cell-
Bender ambient removal are showninSupplementary Fig.1alongwith
the expression of each in the Human Protein Atlasimmune reference,
further demonstrating the enrichment of top-most ambient genes in
basophils and neutrophils and the relative cell type non-specificity of
the bottom-most genes.

PBMC scRNA-seq datasets are considered relatively cleaninterms
of ambient RNA contamination (see the UMI curve in Extended Data
Fig.4a,bascompared withthe onein Extended DataFig. 4e,f). Next, we
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Human heart snRNA-seq background noise removal using CellBender

0: Cardiomyocyte 1
a Raw data 1+ Fibroblast 1 (] After CellBender f log log
2. Endothelial 1 Raw data: TTN counts CellBender: TTN counts
8 3: Pericyte 1 o, % | 3 3
4: Macrophage . ’
14 5: Endothelial 2 *
‘ 1 6: VSMC ~ i Lo 2
12 7: Lymphocyte ; % 3 Ed
8: Endocardial 1 = ‘*% s
: 8 = - =
15 20 9: Cardiomyocyte 2 12 " . L 1
1 ”
10 11 Activated fibroblast 10 % -
12: Lymg endothelial 20 4 0 0
13: Endothelial 3 15 UMAP1 UMAP 1
14: Mast cell
o~ 15: Neuronal o~ 14
% " 16: Cardiomyocyte 3 & il
% 17: Pericyte 2 § !
log log
UMAP 1 UMAP 1 g Raw data: CTNNA3  counts CellBender: CTNNA3  counts
ﬁf 1.5 L 1.5
b o & o
2 - 10 2 b 1.0
10{000c0000000@@000DO O 0QQoc000c0 ] ‘Q H
010000000000000000@®- 0 0000000 - - > PR >
CM[9 Q0000000000000 0@®~ ° 000000O® - - ¢ 3 05 ros
61 @@00@@00000O@000@®0 0 00@000O® - ° -
81000 000000000 00O0QO 0O 00 0°200¢° -0 0 0
2100000000 °2Q0000000O0 oo . . o UMAP 1 UMAP 1
5{000 0000000000000 0 0o 3 . °
13100000000 0000000000 Qo+ +06 o0 -0
12100000000 000000Q0O o0 0o s o0 s @o o0
2010000000000000000¢0 © ©0000°Qo0 -0 h log log
1{00 0000000 000000@00 1 B BEIREEEERENGY JoXe] Raw data: DCN counts CellBender: DCN  counts
Fib[19 0Q0000020000000@0O0 Fib[19 o s - 0Q@0O0 - 1.0 | 10
NM10000Q0000000000@00 MNq o - o c o0 -0@00 .’
7100 c 00000000000 O0O0O0 O 74 - - 0.8 - 0.8
14{Q0O o0 000000 00000O00©° o Fraotion of cells 144 o e e s e e . «~ «~
4{000c0Q00o0o000000O00OO0 in group (%) 44 o . o . o C—. 0.6 o L 0.6
18{Q00Oo0o0QO0OO0o0oo000000O0O0O0O 7?,,, 184 0 - -0 - . e e e e ° = o l‘,&* o4 = § | o4
3{000000000000QO0@0 0 o 20 40 60 80100 34{ . - .o . Q0@ - - - e - - '
Mural[17 Q000000000 00QO0@0O0 0 Mural[w . . o QO@-° - - { ‘%k o |02 L o2
610000000000 00@0@0 c 0 log expression 610000 ° - 00@0@- - - ;
51000 00000000000 0Q o O (averageover cells) 154 0 o e o O - 0000000 o O UMAP T 0 UMAP T [¢]
NN =ZNANMNMS S G P o 2 NN =ZNANMNMS S G b
FRIZIZTBEO5ERS230283 EQIS5305589850%33
28280503223 SQ0 2828050323 SQ0
FEEOELeEa gt ERES SEESELEEgERERES
5Pp 20 5Pp 20 3
o o i log lo
Raw data: LAMA2  counts CellBender: LAMA2  counts
25 - 2.5
e . 1.00 Ambient removal bin ' ?
Z o715 = (98% 82%)  mmm (65% 49%)  mm (33%16%) . 20 . F20
= % 65% % 339 o
—% 0.50 == (82%, 65%) . (49%, 33%) = (16%, 0%) S s g s
'8 0.25 m g P a <§( p
£ 0 > e 10 3 b 1.0
a
o Mﬂmmﬁmmmnﬁmdmmmma&mﬂ%mmdﬂ i a
g 0.5 r 05
S > > > N > > @ @ @ @ N N > N N N N -
e & <° .&\\ & P @'bé & &P S > @ & @ cﬁo & @ @
& © Y S & S F ¥ & & & g & o 0
& F &L & LS S ¥ O X SN 3 & 5
Ky 3 K QO & & o L & o $§ 3 O 3 O ) & UMAP1 UMAP1
& & & & & SN R Y i N
& <& «© Q& N & N <§ & /b&
J & & S A
d@ @ ¥
<€

Fig.3|Removal of background RNA from a published human heart snRNA-
seqatlas, heart600Kk, using CellBender. a, UMAP of raw data for nearly
600,000 nuclei. b, Dot plot showing several highly expressed genesin the

raw dataset. CM, cardiomyocyte; fib, fibroblast; mural, mural cells including
VSMCs and pericytes. ¢,d, UMAP and dot plot after CellBender. e, Similar to
Fig. 2e, this plot shows that many of the removed counts are attributable to
cardiomyocyte genes. All genes expressed at TPM > 10 (N =10,451) have been

assigned to one of six linearly spaced bins according to the estimated fraction of
ambient contamination. The ambient removal bins contain N=9,939 (16-0%),
N=254(33-16%), N = 88 (49-33%), N =48 (65-49%), N =48 (82-65%) and N = 74
(98-82%) genes, respectively. The box plots are defined as described in Fig. 2e.
f-i, UMAP plots of the expression of TTN, CTNNA3, DCN and LAMA2before and
after CellBender. Colored bar axes are truncated at the 80th percentile of per-cell
expression.

examined amore challenging snRNA-seq dataset in which nuclei were
extracted from frozen human heart tissue?, heart600k. Nuclear prepa-
rations are more susceptible to ambient RNA contamination because
thecellsare alllysed and cytoplasmic mRNA becomes free in solution.

Uniform manifold approximation and projections (UMAPs) of
the heart600k dataset were recomputed using Harmony-pytorch for
batch effect correction”, starting with either the raw counts (Fig. 3a)
or the post-CellBender counts (Fig. 3c). The overall shape and appear-
ance of the UMAP s qualitatively quite similarin both cases. However,
an examination of gene expression shows that the dataset has been
cleaned up quite notably after CellBender (Fig.3b,d). Figure 3b shows
that, for many highly expressed marker genes, the raw data would
indicate that these genes are expressed in every cell type. However,
ithas been well established that the role of TTN, for example, isin the
sarcomere of striated muscle cells including cardiomyocytes, and itis
notexpressedinthe other cell types presentin this experiment. Figure

3d,fshowthat, after CellBender, the expression of TTNbecomes much
more specific to the cardiomyocyte clusters. Similarly, CTNNA3, the
product of which is involved in cell-cell adhesion in muscle, appears
much more specific to cardiomyocytes and vascular smooth muscle
cells (VSMC, cluster 6) after CellBender (Fig. 3d,g), in agreement with
existing heart snRNA-seq atlases”*2. The expression of DCN, the prod-
uctofwhichplaysaroleincollagen fibrilassembly in the extracellular
matrix, becomes much more specific to fibroblasts (Fig. 3d,h), also
consistent with refs. 21,42. Finally, the expression of LAMA2, another
component of the extracellular matrix, is found after CellBender to
be much more specific to fibroblasts and cardiomyocytes, with some
lower-level expression in pericytes, adipocytes and neuronal cells,
againinagreement with refs. 21,42.

Cardiomyocytes have higher UMI counts than other cell types
(for example, Supplementary Fig. 2b from ref. 21, where the cardio-
myocytes can have an order of magnitude higher UMI counts than
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other cell types in snRNA-seq). We hypothesized that we should see a
disproportionately high amount of cardiomyocyte genes in the back-
ground RNAremoved by CellBender. An examination of genes prefer-
entially removed by CellBender shows that the top genes in terms of
theremoved fractionarein fact associated mainly with cardiomyocytes
and, toalesser extent, with epicardial cells (Fig. 3e). Many of the genes
plotted in Fig. 3b,d are cardiomyocyte marker genes, including some
of the most highly expressed genesinthe dataset, TTNand RYR2. This
highlights the importance of learning the ambient RNA profile from
the dataset itself: the large amount of ambient cardiomyocyte mRNA,
which is packaged into each droplet as background counts, is appro-
priately targeted and removed by CellBender, vastly improving the
specificity of gene expression for downstream biological analyses.

Accurate identification of cell-containing droplets

Asapartof model training and inference, CellBender produces a pos-
terior probability, g,, that droplet n contains a cell. While this deter-
mination can be rather trivial in some pristine datasets (for example,
the PBMC dataset pbmc8k; Extended Data Fig. 4a,b), complicated
experimental factors and excessive amounts of ambient RNA contami-
nation often make this determination rather challenging (for example,
the snRNA-seq dataset rat6k in Extended Data Fig. 4e,f). A variety of
heuristics are typically employed to determine cutoffs for thresholding
cells versusempty droplets, asin CellRanger version 2. More principled
approaches have been developed, including CellRanger version 3+,
EmptyDrops* and dropkick*’. CellRanger version 3+ and EmptyDrops
use statistical tests to ascertain which droplets have expression pro-
files significantly different from those of empty droplets, while drop-
kick uses aregularized logistic regression model. In our algorithm,
the determination of empty versus non-empty droplets is a result of
disentangling background counts from endogenous feature counts
during model training, in which both gene expression and total UMI
counts of all droplets are taken into account.

Figure 1f (middle left) shows the posterior cell probabilities for
the first 25,000 droplets of the rat6k rat heart snRNA-seq dataset.
Note that the algorithmin general identifies cells and empty droplets
as expected and that the transition between the two is not based on a
hard UMI cutoff. A determination of cell-free versus cell-containing
droplets canbe obtained by thresholding based on the posterior prob-
ability g,.. The algorithm converges to largely binary probability values
for the majority of droplets, and the precise choice of threshold value
affects relatively very few dropletsin practice.

We compare the cell calls made by CellBender with three other
methodsincommon use (CellRanger version 3, EmptyDrops and drop-
kick) in Fig. 4. Figure 4a shows that CellBender generally calls more
cells than CellRanger (Supplementary Section 2.), many of which lie
farther down the UMI curve (black) and are not called by other methods.

The set of cells called by CellBender contains all cells called by
CellRanger version 3, EmptyDrops and dropkick after the same cell
quality-control procedure was applied uniformly for all methods
(Venn diagram in Fig. 4b; see Supplementary Section 2.8 for details
on the quality-control procedure). In addition, CellBender detects
more than 24% extra cells compared to dropkick, 50% extra cells com-
pared to CellRanger version 3 and more than five times as many cells
as EmptyDrops. Given the notable ambient RNA contaminationin this
dataset, we naturally hypothesized that many of the extra cell calls
made by CellBender might have been cytoplasmic debris that were
nevertheless statistically different from the ambient RNA in terms of
gene expression makeup. To evaluate this hypothesis, we obtained a
UMAP embedding of cells detected only by CellBender together with
the cells detected by other methods (Fig. 4b) after typical filtering
for gene complexity and mitochondrial fraction (‘Single-cell analysis
workflow and cell quality-control details’). To our surprise, (1) over 25%
of the cells called exclusively by CellBender passed quality-control
filters, amounting to over 500 cells (Supplementary Table 2) and (2)

the extra cell calls made by CellBender clustered together with cells
called by the other algorithms. Figure 4c shows the UMAP embedding
obtained from the union of all cells called by any algorithm (after cell
quality-control filtering) with putative cell type labels, and it can be
seenthat the cells called exclusively by CellBender have amarker gene
distribution (Fig. 4e) similar to the dot plot created using the union
of all cells called by any algorithm (Fig. 4d). EmptyDrops calls many
low-UMI-count cells that CellRanger version 3 misses, althoughitalso
misses a large number of relatively high-UMI-count droplets along
the rank-ordered UMI plot. This s likely due to the similarity between
gene expression of the empty drops and the most populous cell types
in this particular experiment (Supplementary Section 2.8). As such,
the Dirichlet-multinomial likelihood model employed in EmptyDrops
doesnotyieldastatistically significant probability of being non-empty
for cardiomyocyte-containing droplets. By contrast, CellBender learns
the expression profile of cardiomyocytes from high-count droplets
andis notimpacted.

Finally, we recommend performing additional biologically
motivated and tissue-specific quality control on CellBender cell calls
whenever possible, for example, using mitochondrial read fraction,
exonic read fraction and gene complexity, as suggested by previous
authors***, We have deliberately avoided including such filters in
CellBender to allow broad applicability of this method. Post-CellBender
quality-controlling strategies must be informed by the studied bio-
logical system and the protocol. To emphasize the importance of
post-filtering, we show a plot of the fraction of reads per droplet that
come from mitochondrial genes inthe hgmm12k datasetin Supplemen-
tary Fig. 5. It can be clearly seen that many low-UMI droplets exhibit a
high fraction of mitochondrial genes (possibly dead or dying cells),
and, because they are distinct from empty droplets, they are never-
theless assigned a high probability of containing cells by CellBender.
Afterfiltering the detected cells based on mitochondrial read fraction,
some of these lowest-count and degraded cells will be naturally filtered
out. The analysis shownin Fig. 4 includes such post-filtering criteria.

Reduced off-target gene counts in mixed-species experiments
Adefinitive and straightforward experimental benchmark to evaluate
thelevel of background noise and the efficacy of mitigation strategies
is amixed-species experiment, in which two cell types from different
species are combined and assayed together. This would ideally result
indroplets containing exclusively feature counts from one species or
the other, but, due to the presence of background noise, thisisnot the
case (as shownin Fig. 1c). Here, we use the publicly available human-
mouse mixture dataset from 10x Genomics (hgmmi2k) to evaluate
CellBender and also compare CellBender to DecontX*, another method
for removing background noise.

Figure 5ashows ascatterplot of human and mouse gene expression
ineachdropletinraw dataand for CellBender-processed data at differ-
entnFPRsettings onalogarithmic scale (data plotted onlinear axes are
showninSupplementaryFig. 6). Doublet droplets are omitted from the
plot, as they do not serve as validation. The raw data show hundreds
of off-target cross-species counts in each droplet (best visible in the
side histograms). After removing background noise, we would ideally
expect all cross-species counts to be removed. Indeed, CellBender
(with a default nFPR of 0.01) reduces off-target counts to a median of
19 per cell, that is, by over an order of magnitude from the raw data,
with a median of 225. At an nFPR setting of 0.1, the median off-target
counts per cell drops to 4 (Supplementary Table 4 and Supplementary
Fig.7).Itisworth re-emphasizing that CellBender is acompletely unsu-
pervised model and that the algorithm achieves this level of denoising
without the knowledge of human genes or mouse genes or that thisis
amixture-species experiment.

Figure 5b compares the performance of CellBender with that of
DecontX™®. Validation is carried out on the set of cells called by both
CellBender and EmptyDrops, which was the cell caller used as part of
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Fig. 4| Comparing four cell-calling algorithms (CellRanger version 3,
dropkick, EmptyDrops and CellBender) on the rat6k snRNA-seq dataset.

a, Detected cells for different algorithms: the UMI-versus-barcode rank curve
(black line) is superimposed on the fraction of detected cell-containing droplets
indifferent barcode rank bins (green bars). CellRanger results indicate imposing
anearly hard cutoff on the barcode rank, while EmptyDrops calls several cells
between 6,000 and 10,000 in UMI-count rank (x axis). b, CellBender detects all
cells called by the other algorithms (after cell quality control) and many more.
UMAP embeddings were generated after performing cell quality control. All cells
are shownin gray, with green dots superimposed to denote cells that were not

detected by the method in question but that were detected by CellBender. The
Venn diagram quantifies the agreement between various methods. ¢, UMAP with
celltype labels at aLeiden resolution of 0.5. All clusters appear to be biologically
meaningful.d, The top three marker genes for each cluster (SCANPY Wilcoxon
test) are shown for the union of all cells called by any algorithm (which coincides
with CellBender cell calls). EC, endothelial cell. ¢, Same marker gene dot plot asin
dbut now showing only those cells that were exclusively detected by CellBender.
The similarity to d and the presence of real marker genes indicates that the extra
cell calls made by CellBender are real.

the DecontX pipeline. We found that, while DecontX removes a large
number of cross-species counts, CellBender has asubstantially higher
sensitivity: in fact, at an nFPR of 0.1 (in red), CellBender removes all
cross-species counts from 16% of cells (see the marginal histograms
inFig. 5a, where ‘1’ means that there are zero cross-species counts). In
addition, the results obtained using CellBender show otherimportant
characteristics that are worth emphasizing;:

« Theamount of background noise that getsremoved can be tuned
using the interpretable expected nFPR parameter, as shown in
Fig.5a,e.

« CellBender largely removes the linear trend in the relationship
between cross-species counts and cell-endogenous counts (the
linear trend seen in raw data shown in gray; see also Supplemen-
tary Fig. 6). The proportional relation between background noise
counts and cell-endogenous counts has been associated with
library PCR chimeras formed during mixed-template amplifi-
cation®, which effectively leads to random barcode swapping
between library fragments. Another potential mechanism is

droplet-to-droplet variability in capture efficiency, which also
leads to a proportional relation between endogenous and noise
counts. Both of these phenomena are modeled in CellBender
(Model). Note that this linear trend remains largely unmitigated
by DecontX (Fig. 5b and Supplementary Fig. 6b).

« We find that DecontX treats different groups of cells from the
same species differently, which can be seen as the fragmentation
of blue points in Fig. 5b. We hypothesize that this non-uniform
performance is associated with the hard clustering preprocessing
step in DecontX. While the user can provide their own cluster-
ing to DecontX to mitigate this issue, CellBender sidesteps such
issues altogether by avoiding hard clustering entirely and instead
allows similar cells to share statistical power viaalow-dimensional
continuous latent space.

Near-optimal performance on simulated datasets

Thus far, we have shown evaluations of CellBender using real datasets
andresorted to prior biological knowledge (for example, marker genes)
or expected outcomes (as in mixed-species experiments) to assess
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Benchmarking CellBender on the hgmm12k human-mouse mixture scRNA-seq dataset
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Fig. 5| Benchmarking CellBender on denoising the hgmm12k human-mouse
mixture dataset and a simulated dataset with differently sized cells. The
hgmmi12 human-mouse dataset (a,b) and the simulated dataset (c-g) are
shown. a, Logarithmic-scale plot of species mixing shows that raw data (gray)
contain several hundred counts of mouse transcripts in human cells and vice
versa. CellBender removes most of the off-target noise. The marginal histograms
show that many human cells end up with zero mouse counts and vice versa.
CellBender-denoised counts are shown for several nFPR choices. b, Same plot
asinabutwith DecontX included for comparison. ¢, The UMI curve for the
simulated dataset, showing cells and empty droplets. Simulated cell type 2 has
many more UMI counts than cell type 1. d, The UMAP created from cells called

by CellBender. e, ROC curve quantifying per-cell noise-removal performance.

Black dotted line with gray shading (1s.d. in per-cell performance) represents
the best possible performance given perfect knowledge of all latent variables in
the simulation and is only limited by sampling noise. Large green dots (mean)
show CellBender outputs at a variety of expected nFPR values. Cyan dots show
DecontX output using different values of the parameter 4. f,g, Comparison of
per-cell performance of DecontX (default settings) and CellBender (matching
the output FPR of default DecontX), in which cells are colored by cell type.
DecontX treats the different cell types rather differently in terms of FPR (blue and
orange colors are cell types from ¢,d. CellBender is abbreviated as CB in the plots.
The error bars in e-g show the interquartile range in per-cell performance over
N=1,500simulated cells.

the soundness of the results. Here, we additionally show experiments
using simulated data, with known noise and signal contributions, to
evaluate the performance of CellBender theoretically and in amore
controlled setting. Figure 5c-g shows the results of inference using a
simulated dataset with 10,000 genes, generated according to a noise
modelthatincludesboth ambient sources and barcode swapping (see
‘Simulated data generation’ for simulation details). Importantly, the
CellBender model is slightly mis-specified for this simulated data on
purpose, as the simulation draws ‘true’ gene expression x,,, fromaDir-
ichlet distribution with afixed concentration parameter per cell type.

Figure 5c-g shows asimulation withtwo ‘cell types’ with unique underly-
ing expression profiles, where the cell types have a very different num-
ber of UMI counts. The ambient profile in the simulationis a weighted
average of total expression.

Figure 5e shows the noise-removal performance as a receiver
operating characteristic (ROC) curve. Noise counts that are cor-
rectly removed are counted as ‘true positives’, and a ‘false positive’is
acell-endogenous count thatis erroneously removed. A hypothetical
model with perfect knowledge of every real and noise count would
be represented by the point (0, 1) in the false positive rate (FPR)-true
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positive rate (TPR) plane. The stochasticity of the data-generating
process and finite sequencing depth, however, make this perfect limit
theoretically out of reach, even with perfect knowledge of all latent
variables.

We show the ‘best theoretically achievable performance’, given
perfectknowledge of all latent variables, as the black dotted line. Cell-
Bender comes quite close to this optimal performance (green dots,
obtained by running atincreasing nFPR parameters). Supplementary
Table 5 shows a decent agreement between the specified nFPR and
the empirical FPR. The DecontX ROC curve was created by running
the tool withseveral values of the hyperparameter 4. Default DecontX
parameters were found to correspond to an empirical FPR of 0.142
and a TPR of 0.809. Run with nFPR = 0.0442, CellBender was found to
have exactly the same TPR of 0.809, but the FPR was 0.062. This means
that, for the same amount of noise removal, DecontX removed more
than twice as much signal as CellBender. At nFPR = 0.125, CellBender
matched the DecontX FPR of 0.142, but the TPRwas 0.923. This means
that, for the same value of removal of real signal, CellBender was able to
remove 92.3% of the noise, while DecontX removed 80.9%. This seems
tobe dueto DecontX treating the two simulated cell types differently
interms of where they land on the ROC curve (Fig. 5f,g).

Denoised antibody counts show increased correlation

with RNA

As mentioned in the introduction, CellBender makes no assumption
about the nature of the captured molecules and is generally applicable
to all barcoded features used within the same model. This generality
results from the common phenomenological origin of the technical
noise that we aim to remove. To demonstrate this, we evaluated Cell-
Bender for denoising CITE-seq data. We treated cell surface protein
and RNA measurements on an equal footing as a unified count matrix
and denoised the two modalities simultaneously using CellBender.
Empirically, antibody counts exhibit a very high level of background
noise, which may be attributed to unbound and unwashed antibod-
ies in the cell suspension. We show a publicly available 10x Genomics
CITE-seq dataset of PBMCs (pbmc5k) in Fig. 6. We have grouped anti-
bodies together with their associated genes for ease of visual evalua-
tion. In Fig. 6a, the antibody features (red) have such a large amount
of background noise that it is challenging to discern a clear pattern.
Gene expression counts (blue), by contrast, have a very low amount
of background noise in this dataset. Figure 6b shows the output of
CellBender run with an nFPR of 0.1, where a pattern clearly emerges,
and visually it appears that the red dots (protein antibody) very often
line up with the blue dots (MRNA).

Antibody counts and the corresponding RNA counts exhibit an
expected linear relationship for most antibodies, and the impact of
CellBender on this relationship is shown in Fig. 6e. In the raw data,
the presence of background noise leads to a relatively large nonzero
intercept, such that cells with zero RNA counts have nonzero antibody
counts. CellBender effectively reduces the magnitude of this intercept
while maintaining the biological linear relationship; additional results
aregiveninSupplementary Fig. 9a,b. The specificity of antibodies for
particular cell typesimproves as a direct consequence. Supplementary

Fig.9cshows that the Pearson correlation between the fraction of cells
per cluster with nonzero counts of antibody and nonzero counts of the
corresponding RNA increases markedly after CellBender. We note that
the presence of large intercepts poses a challenge for comparing cell
types across different batches and datasets, which may have different
levels of background counts.

Asaspecific case study, we highlight two antibodies for different
isoforms of CD45 (encoded by PTPRC): CD45RA and CD45R0, shown
with the corresponding mRNA PTPRC. The removal of background
noise (Fig. 6¢) highlights a clear pattern of mutually exclusive differ-
ential expression of the two isoforms in different immune cell types:
compare Fig. 6d, top (raw) and bottom (CellBender). The expression
of HNRNPLL, encoding a splicing factor associated with the CD45RO
isoform*®, is showninSupplementary Fig. 8. We find that effector T cell
states, thatis, T CD8" effector memory (EM)/terminal effector (TE) and
regulatory T cells, have both relatively higher levels of HNRNPLL and
CD45RO0 expression, as expected. CellBender increases the relative
enrichment of CD45R0 in such clusters as shown in Fig. 6d.

Discussion

We present CellBender, anunsupervised method for removing system-
atic background noise from droplet-based single-cell experiments.
CellBender learns the profile of noise counts from the data and sub-
sequently estimates denoised counts. Thisis achieved by leveraging a
deep generative model of noisy single-cell data that combines the flex-
ibility of deep neural networks for learning the landscape of cell states
with a structured probabilistic model of noise-generation processes.
CellBender can be used as a preprocessing step in any droplet-based
single-cell omic analysis pipeline that involves an unfiltered count
matrix. No preprocessing is needed before running CellBender, and
the presence of droplets containing more than one cell (doublets and
multiplets) does not degrade the performance of CellBender (Supple-
mentary Section2.2 and Extended DataFig. 5). CellBender is especially
helpful for analyzing datasets severely contaminated with background
noise. Theseinclude snRNA-seq experiments that are subject to harsh
nuclear isolation protocols and CITE-seq experiments that may pro-
ducelarge amounts of ambient antibodies. Removal of ambient noise
has been advocated as an important step in single-cell analysis work-
flows and protocols***® and is increasingly becoming a standard part
of single-cell data analysis.

Other authors have addressed the removal of background noise
in scRNA-seq datasets in the past few years, including with DecontX*
and SoupX" for removal of ambient RNA and methods for attenuat-
ing background counts due to chimeric molecules®™. In practice, the
operation of SoupXinvolves manualinput and relies on the user’s prior
knowledge of cell type-specific gene expression as well as providing
(or calculating) alist of genes for estimating the background RNA frac-
tionin cells. The method introduced in ref. 13 leverages read-per-UMI
frequency datato detect library PCR chimeras. While this approachis
highly effective at reducing the number of chimeric counts, it cannot
detect physically encapsulated ambient molecules, which are indis-
tinguishable from cell-endogenous molecules based on read-per-UMI
frequency dataalone. DecontX represents an unsupervised alternative

Fig. 6 | Performance of CellBender on denoising a CITE-seq PBMC dataset
from 10x Genomics (pbmc5k). a, Raw data. The dot plot includes antibody
capture features (red), along with the relevant gene expression features (blue)

for all measured antibodies with a corresponding gene that had maximum
expressionin any cell type above 0.05 mean counts. Groupings of related features
are delineated by the gray vertical lines. b, Same as a but for CellBender-denoised
counts. Inbothaandb, the clustering is obtained at a Leiden resolution of 0.6
based on the CellBender output; see Supplementary Fig. 8 for UMAP and cluster
labels. ¢, Examining CD45RA and CD45R0 isoforms of CD45 as log normalized
counts superimposed on the UMAP embedding. The expected anti-correlation of
the two isoforms is substantially enhanced by CellBender.d, UMAP embedding

showing the log ratio of CD45RA and CD45RO expression and indicating the
increased specificity afforded by CellBender. e, Comparing the relationship
between antibody counts and gene expression after scaling to collapse all data
to the same line (‘pbmc5k CITE-seq dataset quality control and normalization’)
for the raw data (top) and CellBender-denoised data (bottom). By removing
background counts, CellBender moves the intercept down toward zero and
makes antibody counts more specific to clusters. The horizontal and vertical
error barsindicate s.e.m. of scaled loglp RNA and antibody counts, respectively,
for each of the 13 cell clusters. The numbers of cells for each cluster are givenin
the caption of Supplementary Fig. 8.
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of CellBender over DecontX include a tunable nFPR parameter for

for background noise removal. We have demonstrated that CellBender
operates near the theoretically optimal limit and surpasses the perfor-

controlling the tradeoff between denoising sensitivity and specific-

ity in a principled fashion, automatic probabilistic determination of

mance of DecontX onseveralbenchmarks. Other practical advantages
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cell-containing droplets and generation of a low-dimensional latent
spaceembedding of cells that can be used in downstream analyses.

While CellBender is particularly well suited for cleaning up and
extracting the biological signal from noisy datasets, the presence
of excessive noise may prevent CellBender from converging to a
near-optimal solution. In particular, if the UMI counts in empty drop-
lets are not at least an order of magnitude less than the UMI counts
in cells, the underlying signal-noise deconvolution problem and
identification of cell-containing droplets will be ill posed. Such edge
cases, however, might properly be considered quality-control failures
from the outset. Non-convergence of CellBender can be diagnosed
by inspecting the called cells and empty droplets to ensure that they
align with expectations based on the experimental design and the UMI
curveaswellasbyinspecting the trajectory of theloss functionduring
training to ensure smooth convergence to a stable value. As with any
non-convex optimization problem, it is good practice to check the
results whenever possible, in this case, using prior biological expecta-
tions, orthogonal measurements (for example, in situ hybridization)
and tissue-specific domain knowledge. We would also like to reiterate
the importance of performing an additional cell quality-control step
after CellBender. Although CellBender can accurately identify empty
droplets, the ‘non-empty’ droplets are not all high-quality cells suitable
for downstream analysis, and cell quality control should be performed
to remove dead or dying cells and debris using a variety of droplet
quality-control metrics as appropriate for the experiment. Finally,
choosing an extreme target nFPR value, while potentially being useful
for certain applications, is likely to result in a denoised count matrix
thatlacks sensitivity. Therefore, we do not recommend choosing nFPR
values larger than 0.1in routine applications.

Itis also important to point out that, for CellBender to achieve a
near-optimal solution to the denoising problem, the CellBender model
must be well specified, thatis, appropriate for the noise in the dataset
at hand. While the datasets shown above were all obtained using the
10x Genomics single-cell gene expression assay, CellBender is suit-
able for use with a variety of droplet-based and well-based single-cell
assays, some examples of which are shownin Supplementary Section
2.4 (Extended Data Figs. 6 and 7), and the CellBender model is formu-
lated to generalize to any droplet-based or well-based single-cell or
single-nucleus technology. The only requirement of the tool is that
there should be some examples of ‘empty’ droplets or wells for Cell-
Bender tolearn the ‘ambient’ or cell-free feature profile. Beyond that,
any assay that generates a single-cell or single-nucleus count matrix
and for which CellBender’s noise model is applicable should be valid
asaninput.

Removing systematic noise from individual datasets before inte-
gration is becoming increasingly crucial as the field is progressing
from homogeneous small-scale experiments toward large-scale data
integration and atlasing efforts, where datasets from many batches
and tissue-processing centers are being combined and analyzed jointly
(for example, ref. 32). By mitigating background noise, CellBender
eliminates asource of batch variation and spurious differential expres-
sionsignals. Thisis particularly important for performing differential
analysis of similar cell types between samplesina cohort. Because the
systematic background noiseis specific to the dataset and is influenced
by the circumstances around each batch, unmitigated noise can then
appear as differential signal across batches. Supplementary Section
2.3includes a clear demonstration of this phenomenon and shows how
CellBender effectively mitigates this source of batch variation and spu-
rious differential expression (Extended DataFig. 8). Inspite of therole
that CellBender plays in mitigating sample-specific background noise,
we would like to emphasize that the ‘batch effect’ in single-cell datasets
isamore complex phenomenon, and removing other sources of batch
variation (including variation in gene capture efficiency, sequencing
depth, protocol differences and so on) and performing single-cell data
integration are outside the scope of this work.

Although ambient RNA is typically considered a nuisance, the
analysis accompanying Figs. 2e and 3e demonstrated that studying
the ambient profile produced by CellBender might be of value in
and of itself and could be used, for instance, to study the transcrip-
tional makeup of extracellular vesicles and to diagnose degraded
and uncaptured cells. Ziegler et al., for example, made use of the
CellBender-inferred ambient profile to help call high-confidence
SARS-CoV-2 RNA® cells in an scRNA-seq study of human nasopharyn-
geal swabs™,

Field applications of CellBender, which include aiding the discov-
ery of new biology and resolving inconsistent findings, can be found
inthe works of other authors who have adopted our method since the
time it was made publicly available as open-source software in 2019.
We would like to highlight ref. 49, in which CellBender was applied
to remove ambient RNA from brain snRNA-seq samples, resulting in
the removal of neuronal marker genes from glial cell types and iden-
tification of previous annotations of immature oligodendrocytes as
potentially glial cells contaminated with ambient RNA. For particularly
compelling example figures demonstrating the effects of CellBender,
see Supplementary Fig. 1in ref. 32 and Extended Data Fig. 1e-h in
ref.26.Incasesin which the raw dataare relatively clean to begin with, Di
Bellaetal. observethat processing with CellBender will (appropriately)
change the count matrix very little*°.

Future research directionsinclude extending CellBender beyond
the count matrix of unique UMIs and modeling the data at the finer
granularity of individual sequenced reads. For instance, chimeric reads
canbeidentified much more effectively whenread-per-UMI counts are
takeninto account”. This information is not contained in the conven-
tional primary quantification of single-cell data as a count matrix of
unique UMI counts. Additional interesting directionsinclude evaluat-
ing the utility of CellBender on additional single-cell data modalities,
including Perturb-seq® for which background CRISPR guides can make
the determination of perturbation challenging.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
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Methods

Why a deep generative model?

Before we take adeeper diveinto the CellBender model and inference
algorithm, we would like to clearly motivate our choice of modeling
framework. The approach taken here, thatis, deep generative models
and SVI, typically requires more computational resources than con-
ventional deterministic algorithms and, thus, must be conceptually
justified.

First, we note that, because the ambient molecules are aliquoted
from the same cell suspension, they correspond to the same fixed
distribution, and our many observations of cell-free droplets provide
sufficient statistics to make it possible to infer that distribution with
very high accuracy, in principle. In challenging cases such as highly
contaminated snRNA-seq experiments in which background noise
removalis most needed, cell-free droplets are defined only inrelation
to cell-containing droplets (‘Accurate identification of cell-containing
droplets’). Therefore, we are obligated to model the landscape of cell
feature counts (mRNA, proteinand so on) on par with the fixed distri-
bution of ambient molecules. Cell states, however, are typically much
more variable than the fixed distribution of ambient molecules. The
challenging issue is our lack of a priori knowledge of the process that
generates true biological counts in a cell and the a priori unknown
biological complexity of the assayed sample.

Furthermore, the fraction of captured mRNA and other targeted
features is on the order of 10% or less of expected counts (using 10x
Genomics version 2 or 3 chemistry, which generates approximately
tens of thousands of feature counts per cell). Such sparse sampling is
referred to as ‘dropout’in the context of droplet-based cell assays. For
our purposes, dropout poses a particularly difficult challenge: eveniif
we are provided with the knowledge of the true distribution of ambient
molecules and other systematic background noises, ‘deconvolving’
the observed count data from any given droplet into noise and signal
contributions is a non-trivial task, given that both contributions are
deep in the discrete regime and are subject to extreme sampling sto-
chastic noise. We must, therefore, come up with a prior estimate of
both contributions. An imbalanced model, for example, one that has
astronger prior for noise and a weaker prior for signal or vice versa will
lead to overestimation or underestimation of noise.

For these two main reasons, that is, (1) an a priori unknown land-
scape of cell states and (2) sparse sampling of the content of each drop-
let (dropout), we are naturally led to a modeling choice that includes
thefollowing ingredients: (1) a flexible class of distributionstolearnthe
landscape of cell states, (2) the ability to allow cells to share statistical
power and leverage the observation from all cells to act as a prior and
(3) the ability to automatically determine whether or not a droplet
containsacell.

Grouping cells into clusters to share statistical weight may be
achieved in multiple ways, including nearest-neighbor clustering (as
inatraditional scRNA-seq analysis) and other graph-based methods®".
Using information learned from similar cells to build a prior belief
is most rigorously done within the Bayesian framework. Bayesian
methods for modeling complex distributions include auto-encoders
and normalizing flows. Finally, automatic determination of cell-free
versus cell-containing droplets requires model comparison, which
may also be rigorously done within the Bayesian framework. We have
found the common denominator of these requirements, together with
the expressibility of the Bayesian framework for turning mechanistic
insights into structured probabilistic models, to naturally lead to a
model thatis no more or no less complex than CellBender.

Model

Our generative model for noisy droplet-based count data is shownin
Extended DataFig.1a, along with aschematic of therationaleinFig. 1g.
Throughout this section, we use n and g subscripts to refer to cell and
molecular feature (for example, gene, protein) indices on various

vector and matrix variables. In graphical models, latent random vari-
ables are represented as circles, while deterministic computations
arerepresented by diamonds. Hyperparameters are denoted without
circles, neural networks are denoted by factors (small black squares),
and the observed counts are denoted by the filled gray circle, ¢,

z, € RZ isthelatent variable that encodes endogenous cell states
in alower-dimensional space. ¥, is the fractional molecular feature
frequency (thatis, normalizedto1) in cellnandlivesona (G - 1) simplex
in R%, where Gis the dimensionality of the raw molecular feature space
(for example, number of genes in scRNA-seq). NN,, shown as a factor
(black square) inthe graphical model, is the ‘decoder’ neural network
that deforms the low-dimensional embedding z,to the raw datafeature
space .. x3is the normalized abundance of ambient molecules and is
a learnable parameter. @< is a cell-specific size factor. d is a
droplet-specific size factor for ambient counts. y, is a discrete binary
random variable thatis 1if thereis a cellin droplet n and O otherwise.
pnis the proportion of reads that are assigned to droplet n but are
exogenous todropletnand have been randomly swapped, forexample,
duetoPCRchimeraformation.e,isadroplet-specific capture efficiency
parameter, close to 1, that reflects how efficiently the targeted mole-
culesin droplet n are captured, barcoded and reverse transcribed. In
other words, €, is a technical confounder that affects the total UMI
countsinadroplet, endogenous and ambientalike. c%¢"and cj5*edenote
the latent counts per droplet that come from the cell and from back-
ground sources, respectively. Finally, ¢, is the observed counts of
feature gin cell n. The generative process is as follows:

z, ~XN(0,1)

Xng = NNy(z)

d¥°P ~ lognormal (d;j“’f’,dgf"")

d?" ~ lognormal (d5", ')

Y. ~ Bernoulli(p)

pPn ~ Beta(py,pp)

€, ~ Gamma (€, €p)

®  ~ Gamma(®,, ®p) )

ceell ~ NegBinom [ (1—p,) €, Yn d5" g, @
A ———

pe! term

ngise ~ Poisson | (1—p,) €, dgrong + P €n (J’n d;ell + dﬂrop))_(g

Ancise term

_ cell noise
Cng = Cng + Cng

Modeling the rate of endogenous and exogenous feature counts.
We will discuss our parametric choices for count likelihoods, that is,
negative binomial for endogenous counts and Poisson for ambient
counts, inthe nextsection. Here, we focus on the expressions given for
the ‘rates’ of the two contributions, u5'and A5, respectively. The
rate of endogenous countsinadroplet pf,z,” straightforwardly follows
from the definitions: y, d! x,, represents the expected counts from
the cellin droplet n. The rate is modulated by the droplet’s efficiency
€, andtheterm (1-p,) isthe fraction of library fragments originating
from the cell that are not swapped to a different droplet, maintaining
the interpretation of p, as the fraction of swapped counts exogenous
to droplet n. The rate of exogenous counts in a droplet 472 has two
parts: ambient molecules and randomly swapped barcodes. The
barcode-swapping process results in a certain fraction of counts in
eachdroplet, p, € [0, 1], having actually originated in other droplets.
We assume thatitis equally likely to swap any two barcodes; therefore,
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the net effect is that the swapped molecules in any given droplet are
effectively sampled from the average (‘bulk’) features over the entire
experiment, denoted by .. Ambient molecules, on the other hand,
may have a distinct composition as argued in Supplementary Section
1.1 and demonstrated in ‘Increased marker specificity and lower
off-target expression’ and therefore are sampled from a different and
learnable profile, denoted by x3. Accordingly, we decompose the rate
into two main parts. The first partis the ambient counts that physically
originate in droplet n: (1 - p,) €, d*"°P X3 The second part is the counts
that did not physically originate in droplet n but were erroneously
assigned there later: p, ¢, (y,, deet 4 girop ))‘(g . This expression is the
product of three terms: the contamination fraction p,, the termin
parentheses together with ¢, that is proportional to the expected
number of molecules physically encapsulated in the droplet and finally
the average (‘bulk’) molecular profile x,.

Count likelihood models. The fundamental noise governing count
data in single-cell sequencing is Poisson, rooted in the empirical fact
that each molecule has only a small probability of being successfully
captured and sequenced. We refer the reader to the excellent analysis
ofrefs. 52,53 on this matter and the nuances and hazards of employing
more flexible count likelihood models.

Accordingly, we model the noise statistics of background noise
counts cjg's¢ as a Poisson distribution. We do not accommodate addi-
tional overdispersion in addition to what is implicitly induced by the
stochasticity of the latent variables that appear in the Poisson rate of
exogenous counts (equation (3)): we believe our theoretical model of
ambient counts and barcode swapping to be flexible enoughand tobe
afairly faithful representation of the simple underlying physical pro-
cess, suchthatany additional overdispersionis likely to resultin model
underspecification.

On the other hand, we purposefully endow endogenous counts
ceelwith extra overdispersion, signified by the overdispersion param-
eter @ of a negative binomial (Poisson-gamma) distribution. In the
context of our problem, thisinclusion is motivated as follows: as men-
tioned earlier,imposing a prior distribution over cfzg"is meantto provide
amechanismto share statistical power across cells, help overcome data
sparsity and ultimately aid deconvolving observed counts into exog-
enous and endogenous compartments. Crucially, the prior imposed
onendogenous counts must be datadriven and endowed with a tunable
parameter to balance the model’s prior belief over endogenous counts
with exogenous counts, asdictated by the structure of the dataand the
maximum likelihood principle that we use to fit the model. The extra
overdispersion parameter provides precisely such a mechanism to
balance the prior beliefs and desensitize the results on the representa-
tional capacity of the underlying neural networks that encode the
structure of endogenous counts. Faced with a dataset that contains a
large number of the same cell types in the same state, the model will
benefit from reducing @ and strengthening its prior belief of endoge-
nous counts. By contrast, prior belief will be commensurately ‘softer’
when faced withacomplex dataset, in particular, if the size of the latent
space is not large enough to afford the complexity of the dataset.

Model hyperparameters. 5!, d5¢', dy"*and dy " areall fixed hyperpa-
rameters that we determine automatically from the provided data using
anumber of heuristics. A cutoffin UMI counts (—low-count-threshold)
is used to remove very-low-UMI-count barcodes. The mode of the
remaining UMI-count distribution is then used to approximate dﬁ"’p.
A Gaussian mixture model is fit to the UMI counts per droplet, and
mixture components larger than dﬁ“’" areidentified and combined to
obtain an estimate of d¢*". The variance hyperparameters are also
estimated from the Gaussian mixture components and scaled down to
account for the dispersion induced by €,. These hyperparameters
specify the prior for endogenous and ambient rate scale factors, d<*"
and d¥°?, both of which are modeled as log normal distributions on an

empirical basis. pis ahyperparameter representing the prior probabil-
ity that any given droplet contains a cell, and it is derived from the
expected number of cells in the experiment and the total number of
droplets included in the analysis. (p,, ps) are general priors for the
contamination fraction p,, with default values of (1.5, 50), motivated
by the fact that the shape of this beta distribution matches our expecta-
tions, from observations of many datasets, that barcode swapping is
typicallyinthe range of afew percent. The hyperparameter €, controls
how concentrated the droplet-specific capture efficiency will be
around 1. We use a fixed value of 50, motivated by examination of
overdispersion of droplet sizes in the 10x Genomics ercc dataset,
compared to a Poisson.

Choice of contamination model. The CellBender model can be
restricted to only ambient background noise by setting p,= Oforalln,
oritcanberestricted to barcode-swapping background noise only by
removing the ‘endogenous ambient’ term (1—p,)¢, dg“’p)(g, from the
Poisson rate for cjg*. The default mode in CellBender uses the full
model as specified in equation (3), but the user can specify the
ambient-only or swapping-only model via command-line arguments
inour provided implementation.

Inference

The probabilistic model described in the previous section entails sev-
eral global (experiment-wide) and local (one for each droplet) latent
variables. Scalable approximate inference can be achieved using SVI**
and amortization. We provide a brief account of the inference strat-
egy in this section. We note that other authors have also successfully
applied SVItechniques for scalable probabilistic modeling of single-cell
data® ¥, The objective function that is optimized in SVlis the evidence
lower bound (ELBO):

P(X,ZIB))’

91 @

ELBO(X |, ) = f dzqZ|p) Iog(

where X ={c,.} is the observed data, 6 = {3, W,} is the bundle of
tunable model hyperparameters, including the weights of the
neural network NN, (denoted by W,), Z = {p,, Y, d", d3", €, 2,,, ®}
is the bundle of latent variables, and g(Z|¢g) is the variational
ansatz shown in Extended Data Fig. 1b and parameterized by
@ = (Wy, Wa We, W, " AP, 5P, By P, oo D). In the SVI methodol-
ogy, one obtains argmax, , ELBO(X |6, ) via successive subsampling of
data Xandincremental updates of (6, ) using a stochastic optimizer.
Werefer the reader toref. 55 for areview.

Constructing a variational posterior distribution. The faithfulness of
the approximate posterior to the true posterior is ultimately depend-
ent on one’s choice of the variational ansatz g(Z |p). Extended Data
Fig. 1b shows the structure of our proposed ansatz. Generally speak-
ing, we impose tunable parametric distributions over global latent
variables while we infer local latent variables using auxiliary neural
networks (often referred to as recognition or encoder networks). The
latter technique is referred to as amortization and is the key to the
scalability of our algorithm to a theoretically unbounded number of
data points (cells).

The posterior for z,, is encoded by a neural network NN,, which
takes in observed counts c,,, along with the current estimate of the
ambient profile x3, and outputs (z,,, Z,,,); the latter parameterize the
mean and scale of an assumed Gaussian posterior distribution for z,:

z, |Cng’X§ ~ N(Zn;p’zn;0)~ ©)
Note that this encoder network for z,,, together with the decoder net-

work that maps z, to x,,,, form the auto-encoder structure mentioned
earlier, in the spirit of ref. 34.
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The variational posteriors for the cell-presence-indicator variable
Y thecellscale factor d%'and the droplet-specific capture efficiency
€,are parameterized via additional neural networks (shown together
as NN, in Extended Data Fig. 1). These auxiliary encoder neural net-
works each take c,, and x; as input and estimate all or some of the
parameters of specified posterior distributions. In practice, we found
itbeneficial to further provide afew handcrafted features constructed
fromc,,and y3asinputsto each of the encoder neural networks (‘lmple-
mentation details and technical remarks’). The posterior for y, is
assumed to be Bernoulli and is parameterized by the neural network
NN, that outputs g, the cell-presence posterior probability:

Yn |Cngan ~ Bernoulli (qn)- (6)

The posterior for d2'is assumed to be log normal and is parameterized
by the neural network NN, which outputs @2, a strictly positive scale
factor, per droplet:

A5 | Cog, X3 ~ lognormal (dSct, dse! ). @)

We have additionally introduced alearnable posterior parameter,
deell, to characterize the uncertainty in estimating cell scale factors.
Theposterior for ¢, is assumed to be Gamma-distributed and is param-
eterized by the neural network NN, which outputs €,,,, the posterior
mean capture efficiency:

€n | Cng)Xg ~ Gamma (en;u €as 5a)~ (8)

Here, €, is the same hyperparameter from the model, controlling the
uncertainty in droplet efficiencies. Finally, the variational posteriors
for @, p,and d¥"°P are assumed as follows:

® ~ Gamma (@a,a),;),
Pn  ~ Beta(Py.Pp),
dﬁ"’p ~ lognormal (a‘,;mp,agmp),

each of which involve two trainable parameters. Note that we have
assumed that the barcode-swapping rate p,and droplet size d*"" have
the same posterior distribution for all droplets n, even though these
are droplet-specific (local) latent variables. We have found this more
restrictive posterior towork wellin practice while allowing more robust
SVIfits.

Approximate treatment of Poisson and negative binomial convolu-
tion. Details aside, the structure of our generative model for endog-
enous and exogenous counts is as follows (equation (3)):

ceell  ~ NegBinom (u,a™!),

choise + Poisson (A),

c = ccell 4 gnoise

where we have dropped the common ngindices and used bold sym-
bols as a shorthand for cell x feature matrices. Here, g and A refer to
the endogenous and exogenous count rates, and a = @'is theinverse
overdispersion. This parametric decomposition into non-negative
endogenous and exogenous contributions ensures that the inferred
endogenous counts ¢ | ¢ are < c. This desirable property, however,
poses atechnical challenge: as a part of variational inference, we need
to be able to compute the probability density of c in a differentiable
fashion; however, the sum of ageneral Poisson and ageneral negative
binomial distribution does not admit a closed probability density
expression. Formally, the latter is given by the convolution of the two
probability densities. Computing this convolution explicitly, while

doable, is prohibitively slow. We therefore resort to the following
approximation during model training:

NegBinom c|f1,d“1 , ifu>ed
p(clﬂvA’ lX) = ( ) (9)

Poisson (c|A), otherwise

where we set e =107, and j and & are obtained by matching the first
two moments of an ‘effective’ negative binomial distribution to
Ccell + Cnoise.

p=p+A,
&:a(’%‘)z, (10)

where all algebraic operations involving matrices are element wise.
Therationale for switching from a moment-matched negative binomial
to Poisson when p < eAdis for numerical stability: when g > 0, that is, a
vanishing prior rate of endogenous counts, we obtain @ — o, which
leads to numerical instability. At the same time, the observed countis
dominated by noise counts in this regime, that is,
E[cce(E[cmoise])~! =p/1_1 < £ =105, justifying the switch.

Constructing the denoised integer count matrix:
preliminaries

Our Bayesian model, following fitting of model and posterior param-
eters, allows us to compute the posterior probability of having a speci-
fied number of noise counts in each entry of the count matrix. Even
though we marginalize cj*¢ during inference, we can recover its pos-
terior after model fitting via posterior sampling. We formally have

P(CL’?“ [{cngl) =

NegBinom(c,g—choi*® | uce!, &) Poisson(chgise | Anoise) (11)

dzqz - - -
q( ) g NegBinom(c,—c9™ | ucell ) Poisson(choise | Anoise ’
cpoise =0 g ng ng

ng ng

where Zis the bundle of all other latent variables along with their
approximate posterior distribution g(2). The terms and expressions
appearingintheintegrand are evaluated at Z. In practice, we approxi-
mate theintegral via N discrete Monte Carlo samples drawn from g(2)
and keep track of the marginal posterior of noise counts for each of the
n x g count matrix entries. We compute the probabilities in log space
for numerical stability, truncate the allowed range of cjo™ to a safe
upper bound, normalize each MC sample via the ‘LogSumExp’ opera-
tion and keep track of the running total over MC samples via sequential
‘LogSumExp’ operations for memory efficiency.

The obtained n x gmarginal posterior distributions comprise our
full probabilistic knowledge of noise counts for each entryin the count
matrix. Standard single-cell downstream analysis workflows, however,
by and large expect a single point estimate for input, as opposed to a
distribution. Furthermore, a plurality of widely used algorithms such
asvoom’for differential expression analysis, the highly variable gene
selection of Seurat version 3 (ref. 57) and scVI* for latent space learning,
explicitly expectinteger counts as input due to employment of discrete
likelihood models such as negative binomial. These expectations moti-
vate us to estimate a single integer matrix of noise counts, ¢, from
the obtained Bayesian posterior p (czgise |{cng})and produce aninteger
matrix of denoised counts ¢ = ¢, — ého™ as the primary output of
CellBender. Thestrict satisfaction of ¢, = ¢ig + ¢o > implies the com-
plementarity of noise and signal estimators. Hereafter, we focus on
estimating the noise matrix for concreteness.

Canonical Bayes estimators for summarizing p (cﬁ‘gise | {cng}) asa
single point estimate include: (1) the posterior mean g [c',}gse [{Cag} ]and
(2) the posterior mode argmax p (che'*® | {c,} ), also known as the MAP
estimator. The posterior mean estimator is an unbiased estimator;
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however, it yields non-integer values, which is undesirable. The MAP
estimator yields integer values; however, it is a biased estimator. For
example, the MAP estimator systematically underestimates noise
counts for genes that have lower noise prior rate than the cell expres-
sion prior rate (‘Onthe asymptotic bias of canonical Bayes estimators’).
Neither of these canonical estimators provide atunable parameter for
increasing or decreasing the strength of denoising and controlling the
tradeoff between denoising sensitivity and specificity.

To address these shortcomings, we introduce a number of
application-specific estimators to meet our specific needs. In gen-
eral, weaimto develop estimation strategies for attaining the highest
posterior probability subject to specified population-level constraints
such as gene-wise or dataset-wise total noise budgets or expected
FPR. Having such handles is useful in many downstream applications
such as ascertaining the specificity of marker genes. We note that the
true Bayesian recipe for conveying the results of CellBender is the full
posterior and not a point estimate and that the optimality of an inte-
ger noise estimator is not universal and depends on the downstream
application. For example, the desire to have an estimator suitable for
differential expression testing between samples imposes a different set
of constraints than the desire to have a given degree of certainty that
each countintheoutputis not noise. We examine the merits and draw-
backs of each strategy using different metricsin the following sections.

Estimating the integer noise matrix as a multiple-choice
knapsack problem

We show that the problem of estimating an integer noise matrix, ¢,
that attains maximum posterior probability subject to linear con-
straints is equivalent to the MCKP, which is a classical combinatorial
optimization problem. To set the stage, we assume alinear index map,
7 :m— (n,g),fromme{l,..., Nx G}to the entries of the count matrix
(n,g),fori<n<Nand1<g<G.Let M be the index set of noise count
matrix elements that we wish to perform constrained estimation over.
Choices include the entire count matrix M, a row (cell), »,, or a col-
umn (gene), M,. We define X, € {0, 1} tobe abinary variable thatis Lif
the noise count for the matrix elementat 7(m)is set tocand is O other-
wise. As there is a unique choice to be made for each matrix entry, we
require 3°_, X, = 1, where Ciis the maximum specified noise count
and has an upper bound of max c,.. We further define a ‘reward’ for each
assignmentasV,,. = log p(cggijf = c|{cyg} thatis, thelog posterior prob-
ability for that assignment. Finally, we wish toimpose alower bound L
on the sum total of noise counts. This is readily expressed as
S et Sno Xme e = Lwherew, = (0,1, ..., O) isaninteger-valued weight
vector. Maximizing the log posterior probability, which is given as
Tment Seeo XmeVme Subject to the aforementioned constraints, is
expressed as

Xinc €10,1},

C

max Z ZX'"CV’"C’

meM c=0

c
subjectto | X Xpe =1, (12)
c=0

C
Zme]\/[ Z:c:O X’"CwC 2L,

which is precisely the MCKP problem. MCKP is a classical NP-hard
problem that admits a pseudo-polynomial dynamic programming
solution. Inour specific case, we show that, subject to mild assumptions,
afastandexactsolutionisfeasible withtime complexity, O(|am| x |L — L*|),
where L* =}, argmax_V, (‘A fast and exact MCKP solver for strictly
log-concave posterior distributions’). Note that L* is the sum of MAP
estimates over the specified count matrix entries m € M. As the noise
rate is typically lower than the endogenous expression rate, L* is typi-
cally an underestimate (‘On the asymptotic bias of canonical Bayes
estimators’), and, as such, we are generally interested in casesin which
L > L*to overcome the asymptotic bias of the MAP estimator. Moving
away from the MAP estimator by definition decreases the posterior

probability. Assuch, theinequality constraintisrealized at the threshold
L,and, thus, we refer to L as the ‘noise target’.

Concrete MCKP problems for enforcing gene-wise and dataset-wise
noise count constraints. The MCKP framework allows us to impose
noise targets over arbitrary selections of count matrix entries. For
concreteness, we consider two scenarios: (1) imposing gene-wise con-
straints, where each columngofthe noise count matrixis constrained to
sum to = L, and is estimated independently and (2) dataset-wise
constraints, where all count matrix entries are estimated at once sub-
jecttoaglobal constraint that the sum total of noise counts > L. Setting
the noise target may also be done ina different ways. Here, we consider
two strategies: (1) anoisetarget based onannFPR and (2) anoise target
based on the cumulative distribution function (CDF) of the posterior
ofthe aggregated noise counts. These strategies are described below.

Using the nFPR to specify the noise target. We introduce a single tun-
able parameter, nFPR € [0, 1], to specify the noise target. We define this
parameter such that nFPR = 1implies allocating all raw counts as noise
counts, whereas nFPR = 0 implies removing as many noise counts as
whatisinferred fromthe model posterior aggregated over the appro-
priateslice of the dataset, that s, either gene-wise or for the full dataset.
Specifically, we define nFPR as follows. For each gene g, we estimate
the expected noise count per likely cell-containing droplet as follows:

Tlldn > 4°1((1 = P) A" €y X + P X €nCng)
Yalldn > q7]

Cn0|se ~

, 13)

where/[q,>g*]isanindicator function with value 1wheng,>¢g*and O
otherwise, g* = 0.5 is the threshold we have chosen for determining
likely cell-containing droplets, and p = p,(p, + pg)~! is the posterior
mean of the barcode-swapping rate. The two terms in the numerator
correspond to ambient and barcode-swapping contributions to noise
counts. Likewise, we estimate cell counts as follows:

“cell Enl[qn > q*] max (Cng - (1 —/_)) dﬂrop €,,;”)(2 - p/\_/g en;u Cng’ 0)
C ~

. (14
€ > lqn > q*] )

Equipped with these two aggregate estimates, we define the nFPR
recipe for specifying the per-cell per-gene noise target £, as

&g = c3°™ + nFPR cz,q. (15)
The gene-wise total noise target for Ncellsis givenas L, = N ¢,, and the
dataset-wise total noise target for Ncellsis givenas L = N} .2,.

Using the aggregated noise posterior CDF quantiles to specify the
noise target. Another strategy for setting a total noise target over a
slice of the dataset is via the quantiles of the aggregated noise posterior.
The aggregated noise over the desired set of count matrix entries
m € M isdefined as

coise = 7 choise, (16)

mem

The posterior distribution of c}o*¢is formally given as the convolution
ofthe posterior distribution of theincluded noise count matrix entries.
The latter can be obtained numerically using fast Fourier transform.
In practice, we have found that calculating the first two moments of
choiseand appealing to the central limit theoremyields virtually identical
results. These moments are given as

noise

o = 3 Eguspfasie) [
‘ )
—_ noise
% =, Vil stz S |
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where Var denotes the variance and the central limit theorem implies
that cio¢ ~ N (u,, 03,). Given a total noise CDF quantile, g, we set the
noise target to

L =y + Opc 271(q), (18)

where ®7)(q) is the inverse CDF of the normal distribution. Similar to

before, we can set . to either M, or M, forimposing dataset-wise or
gene-wise noise targets, respectively.

Estimating the integer noise matrix via element-wise noise
posterior CDF quantiles

A straightforward strategy for estimating the integer noise count
matrixis to pick the noise count for each entry of the noise count matrix
accordingto aspecified CDF quantile, g. In particular, the choiceg= 0.5
corresponds to the posterior median estimator, which is a canonical
Bayes estimator. Specifying a higher (lower) value for g results inremov-
ing more (fewer) noise counts, and, as such, g serves as a handle for
setting the denoising eagerness of CellBender. This algorithmis imple-
mented as follows. For each cell n and gene g, we calculate the CDF of
noise counts Fgse(cho™®) from the noise posterior

> p(czgise =c |{c,,g})A

Fraise(x) = 19)
c=0
The estimated integer noise count matrix is then obtained as
o€ = argmax, [Freise(x) < q]. (20)

This estimator, as opposed to the MCKP approach discussed in the
previous section, does not involve solving a global constrained opti-
mization problemand, as such, does not allow targeting noise counts
in aggregate, in either a gene-wise or a dataset-wise manner. While it
is possible to fine tune the quantile threshold g to achieve the desired
nFPR, we did not attempt it: MCKP achieves the same goal by allocating
the total noise budget more globally rather than locally and, as such,
can achieve a higher total posterior probability.

Estimating the integer noise matrix via posterior
regularization

Another strategy for estimating an integer noise matrix subject to
external constraints, such as dataset-level or gene-wise nFPR, is pro-
vided by the framework of posterior regularization of ref. 58 and is
another optimization-based approach. This is the framework we had
adopted in CellBender version 0.2.0, and we provide it here for com-
pleteness. Concretely, following the set-up of equation (4) fromref. 58
(withnoslack, thatis, £ = 0), given data X = {c,;} and latent variables Z,
we seek a posterior distribution p;,, that solves the following con-
strained optimization problem:

argminpreg KL (preg(2) || P(Z] X)), subjectto E,  [P(X,2)] 2 b, (21)

whereKL denotes the Kullback-Leibler divergence, p(Z| X) is the unreg-
ularized Bayesian posterior, p,.,(Z) is the sought-after regularized
posterior, and @(X, 2) is a specified function of raw data and latent
variables that we wish to constrain below a specified value of bin expec-
tation. We have implicitly grouped the model parameters together
with the latent variables in Z. Adapted to our problem, we wish to
computearegularized posterior for noise counts, preg(c""‘se) suchthat
itis as close as possible to the regularized posterior in terms of KL
divergence, while the expected total noise count over all likely
cell-containing droplets is controlled by the user-specified nFPR
parameter (equation (15)):

argmin

, KL (Preg(€hg*) | P(chg™ | Cag)) (22)

i > g* Cnoise
subject to E Zll9n > ') Cng™

> choise 4 nFpR ceel,
Pee | Y00 > %] & g

(23)

where g = 0.5is the posterior probability threshold that we have chosen
for likely cell-containing droplets. As it is written, the nFPR condition
is imposed separately for each gene g. A more relaxed version of the
problem is obtained by summing both sides of the constraint over g,
whichis equivalent to imposing a dataset-wise constraint. In the dual
formulation®®, the regularized posterior that satisfies equation (21)
canbewritten as

w* = argmax [-bw —log Q(w)], (24a)
w>0

QW) = f dZp Z|X)exp [0 (X, 2)], (24b)

Do) = pZIX)exp [-w* (X, 2)] (4c)

Qw*) ’

where wis anauxiliary Lagrange multiplier, and the problemisreduced
tofindingan appropriate ' that satisfies the constraintimposed by b
and @( - ). Exact posterior regularization (PR) requires separate SVI
model fits for every choice of constraint threshold (bin equation (22)).
Intheory, one could solve the optimization problem posed by equation
(24a)-(24c)indualform, plugging Dieg (D)into the ELBO (equation (4))
andinterleaving SVIupdates with constrained satisfaction updates: a
computationally prohibitive task. Another approach is augmented
Lagrangian constrained optimization, in which one concurrently
updates w along with model parameters using the same stochastic
optimizer to minimize the ELBO while also approximately satisfying
equation (24a).

Here, we make an approximate simplifying assumption akin to
perturbation theory: as long as the user does not impose extreme
values of expected nFPR compared to the FPR achieved in the unregu-
larized problem, then we expect all latent variables to remain approxi-
mately the same, with and without PR, with the exception of perhaps
cpee, which directly appears in the constraint. By employing this
approximation, we can freeze all latent variables to their unregularized
posteriors and only regularize p (c""‘Se | {c,,g}) ex post facto. To achieve
this goal, consider scaling 59 — B, Ao, where 172 is the Poisson
rate of exogenous counts glven in equation (3) and B,201is a
to-be-determined scale factor. We postulate that finding the optimal
scale factor that satisfies the posterior constraint is equivalent to solv-
ing equation (24a)-(24c). To show this, we use the following identity,
which can be readily ascertained using the explicit expression of the
Poisson probability mass function:

POlSSOl’]( choise ‘ﬁg nmse) — e/l,,g( —Be) ﬁ;ﬂgl Poisson (Cnmse |/1n0|se) . (25)
Accordingtothe dual formulationgivenin equation (24a)-(24c), we can
write p},, (cho™e) for likely cell-containing droplets, thatis, g, > g%, as

Poisson (c,';gse |/1',,1§ise) exp [—

% guse Poisson (choise A7i5¢) exp [~ " nglse]'

w* Cnmse]

preg ( nmse) — (26)

Comparing this to equation (25), we identify * = —log 8;. In other
words, solving for the regularized posterior reduces to the problem of
finding the largest noise scale factor g that satisfies the constraintin
equation (22). The regularized Poisson rate for noise counts is then
B; Anee. For a dataset-level nFPR constraint, the gene-wise scale factor
B; reduces to a single global scale factor, §'. At the moment, only the
dataset-level nFPR condition isimplemented in CellBender.
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Locating the optimal ' via binary search and estimating the integer
noise matrix. We locate the optimal noise scale factor 8 numerically
using abinary search strategy. Our goal is to identify the largest value
B such that the inequality given in equation (22) is satisfied. A binary
search is performed over the range ' € [0.01, 500]. At each iteration
of the search, we estimate E,[cjg*¢] by obtaining the regularized
posterior using equation (11) and making the replacement
Anoise _, g )l',}gse. For computational efficiency, we only includearandom
subset of likely cell-containing droplets (128 randomly chosen cells by
default). The entire optimization procedureis repeated five times using
different randomly chosen subsets of cells. The final value of §'is the
average fromthe several repeats. Having located the optimal 8 value,
we obtain the integer noise count matrix as the MAP estimate from the
regularized noise posterior. We refer to this noise-estimation strategy
as PR for mean targeting or ‘PR-p’ for short.

Approximate noise CDF quantile targeting via posterior regulariza-
tion. A variation of the discussed PR strategy is obtained by replacing
the constraint appearing in equation (22) with the following;:

[Cnmse] >E [Cnmse] +ag, [Cnmse] 27)

preg

where a = ®7'(q) is approximately equal to quantile g of noise under
the normality assumption. Note that the constraint isimposed at the
level of individual count matrix entries. The motivation for
this approachis to allocate the extra noise budget preferentially to
the count matrix entries with lower noise posterior confidence.
Again, the dual form of the PR problem implies a solution,
preg(c""'se) x p(c""‘Se [{Cng}) exp(— w,,gc?,g,‘se) where o}, is a matrix of
Lagrange multlpllers to be determined to satisfy equation (27). In
practice, we obtain w},, by performing a parallelized binary search as
described earlier. Once the regularized posterior is obtained, the out-
put can be summarized either by taking the posterior mean, the pos-
terior mode or asingle sample, all of which we compare later. Note that
a=0 is identical to the unregularized posterior. We refer to
this noise-estimation strategy as PR for quantile targeting or ‘PR-q’
forshort.

Evaluating different noise-estimation strategies

We introduced several strategies for estimating noise counts from
the Bayesian noise posterior in ‘Estimating the integer noise matrix
asamultiple-choice knapsack problem’, ‘Estimating the integer noise
matrix via element-wise noise posterior CDF quantiles’ and ‘Estimat-
ing the integer noise matrix via posterior regularization’ to address
the shortcomings of canonical Bayes estimators and allow us to con-
trol the denoising sensitivity—specificity tradeoff. In this section, we
evaluate these strategies on a simulated dataset that closely follows
our model (‘Simulated data generation’). Concretely, we generate a
test dataset consisting of three ‘cell types’ with fixed gene expression
profiles. We generate 100 cells of each type with 5,000 UMIs per cell
onaverage and abackground noise that consists of only ambient RNA
for simplicity. The ambient RNA profile is taken to be the same as the
average gene expression across all simulated cells, with 200 ambient
UMIs per droplet on average.

Here, our focusis to evaluate various noise-estimation strategies
after model fitting and inference. To sidestep confounding factors
such as our ability to fit the model and infer the noise posterior (which
depends on the dataset size, the degree of model faithfulness and
our variational approximations), we assume perfect knowledge of all
latent variables other than c¢j2*¢. Such an oracle short circuits the
marginalization over Zin equation (11) and evaluates the integrand at
the true value of Z. Therefore, the performance metrics given in this
sectionare theoretical upper bounds. Acomparison of such theoreti-
calupper bounds with actually attainable end-to-end results is given
inFig.5c-g.

First, we evaluate the different estimators by studying their ROC
curves. To constructanROC curve, we consider eachn x gentry of the
noise count matrix, take ‘noise’ as the ‘positive’ class and calculate the
2 x 2 confusion matrix as follows:

TPy = min (chgse, ™).

g = max (0 6"0159 noxse)
Ppg = ng >
(28)
cell cell
TN, = min (cng +Cng )

cell
FN,, = max (0 Crg — c,cfg")

~cell -

where cio¢ and ci" represent the simulated truth values, ¢, is the
CeIIBender output and c",ﬁ‘g'se = Cpg— é,fg" (TP, true positive; FP, false
positive; TN, true negative; FN, false negative). We ‘summarize’ the
resulting n x g confusion matrix either (1) asa‘macro-average’ per gene
or per cell, where we sum the element-wise 2 x 2 confusion matrices
alongnor g, respectively, or (2) asa‘micro-average’ per gene or or per
cell, where we calculate the element-wise TPR,,and FPR ,,, remove the
undetermined entries and calculate the arithmeticmeanalongnorg,
respectively. Extended Data Fig. 9 shows the resulting ROC curves for
various estimation methods. We have further reduced the obtained
TPR and FPR values for per-cell (or per-gene) micro-averages and
macro-averages to a single point via arithmetic averaging for better
visibility. The canonical Bayes estimators (black circle, square, dia-
mond) each provide asingle point onthe ROC plane. By contrast, each
of our estimators provides a natural parameter for controlling the
position onthe ROC curve.

Itis clear that drawing a random sample either from the actual
posterior (black triangle) or from the regularized posterior (PR-p,
orange; PR-q, purple) is a poor strategy, while also being inconsistent
and non-deterministic estimators. Posterior mean estimators, either
unregularized (diamond) or regularized (PR-q, brown circles), neither
produce an integer count matrix nor are among the top-performing
estimators in terms of the ROC curve. Estimators based on the reg-
ularized posterior mode (PR-, blue circles; PR-q, red circles), the
element-wise posterior CDF quantiles (greencircles) and MCKP estima-
tors (per-gene nFPR target, pink; global nFPR target, gray) all do well
and are practically tied in terms of the ROC curve, with the estimator
based on element-wise posterior CDF quantiles showing aslightadvan-
tage in this benchmark.

To further distinguish the characteristics of the different estima-
tors, we also study over-removal or under-removal of noise counts for
each gene versus total gene expression in Extended Data Fig. 10. The
ideal estimator is expected (1) to exhibit the same characteristics across
the entire gene expression spectrum and (2) to not under-remove or
over-remove noise counts when the total noise budget is chosenin a
balanced way (thatis, g = 0.5for CDF-based targets or nFPR ~ 0). Among
the top-performing estimators in terms of the ROC analysis, we find
that MCKP witha per-gene nFPR target satisfies both expectations (last
rowinExtended DataFig.10). Specifying a dataset-level (global) noise
budget tends to overcorrect highly expressed genes (PR-p posterior
mode and MKCP global nFPR target in Extended Data Fig. 10).

In summary, our analysis highlights two estimation strategies: (1)
the MCKP estimator with gene-wise nFPR control, which shows decent
ROC characteristics and aconsistent performance across the entire gene
expression spectrum and (2) element-wise posterior CDF quantiles,
which show the best ROC characteristics although with some depend-
ence on the gene expression rate. We have chosen the former as the
default estimation strategy in the latest release of CellBender (version
0.3.0_rc). The previous version (version 0.2.0) used the PR-pL strategy,
which, aswe have shown here, isinferior to the MCKP. Finally, we note that
all ofthese estimation strategies areimplementedin CellBender, should
auser have a use case that warrants a strategy other than the default.

Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-023-01943-7

Afast and exact MCKP solver for strictly log-concave
posterior distributions

MCKPis an NP-hard problem that admits a pseudo-polynomial dynamic
programming solution. Here, we show that assuming strict logarithmic
concavity of the noise posterior distribution leads to a fast and exact
solution of the MCKP with time complexity (M x |L — L*|), where
L* =%, argmax, V.

We define alog-concave discrete distribution as follows: adiscrete
probability distribution p(k) : {0}UN — R* is called logarithmically
concave if and only if log p(k + 1) + log p(k — 1) < 2log p(k). It is called
strictly logarithmically concaveif <is replaced with strictinequality.

Many common probability distributions are logarithmically con-
cave, including Poisson and negative binomial distributions, most of
which are also strictly logarithmically concave except for a measure
zero set of parameters. We do not aim to rigorously prove the condi-
tions for strict logarithmic concavity of our noise posterior distribu-
tion. However, we have empirically verified that this property holdsin
various datasets. To motivate thisempirical observation, consider the
limit @ > 0 and g(2) » §(Z- Z), where & represents a Dirac delta func-
tion. It is easily shown that the noise posterior tends to the binomial
distribution with a success probability of p = Apoise(Anoise + ycelh)~1 and
total number of trials N = ¢,, in this limit (‘On the asymptotic bias of
canonical Bayes estimators’), which is a log-concave distribution.
Continuity implies the existence of an extended parameter regime
around this limit where logarithmic concavity holds. Increasing @ or
the dispersionin g(2) can be thought of asimparting uncertainty on p.
Modeling this uncertainty as a beta distribution, the noise posterior
may then be approximated as a beta-binomial distribution, which is
also strictly logarithmically concave except for a measure zero set of
parameters or irrelevant parameter regimes, for example, bimodal
success probability p. Hereafter, we assume the strict logarithmic
concavity of the noise posterior as given.

We callthe MCKP problem posed by equation (12) a‘strictly convex
MCKP problem’ if and only if the reward weights V. =
log p(cg?j;e = c|{cygharederived fromstrictly log-concave distributions.
We will show that the strictly convex MCKP problem admits an exact
greedy solution. To set the stage, consider the unconstrained MAP
estimate Xj,. = 6(c,argmax_V,.) and observe that it achieves the
total noise target L* =}, Zfzo CXpe = X ,argmax. V. Clearly, if the
specified total noise target L coincides with L*, then X;,. is indeed the
optimal solution because each reward termis individually maximized,
the constraint is satisfied with equality, and moving away from the
equality constraint satisfaction implies deviating from the MAP point
and thusdecreasing the reward. Inanutshell, our greedy strategy is to
take X, as a reference point and iteratively modify it via best local
moves such that the specified noise target is met. To thisend, we define
A=L - L*asthegapbetween the total noise count ofthe MAP solution
X and the specified total noise target. We refer to the sought-after
solution as X;,.(A). By definition, X%,.(0) = X;,.. We only consider the
case 4 >0 here. The case 4 <0 can be worked out by symmetry.
Our greedy algorithm for solving this problem for 4 > 0 is as follows.
To obtain X},.(1) from X,.(0), we consider || local moves where the
noise count for each coordinate mis increased by 1 while keeping the
other coordinates fixed; we chose the local move that yields the highest
possible reward. Note that we are not considering all possible moves
that satisfy the constraint, for example, removing two noise counts
from a coordinate and adding three counts to another. We proceed
with this greedy strategy in an iterative fashion until we reach the
desired 4.

The greedy iterative coordinate-ascent algorithm solves the
strictly convex MCKP problem exactly.

For proof, consider the following objective function:

v C
Lo Xppg) = 20 Y Wine 6(C X +X5),

m=1¢c=0

(29)

where

Wpe = max, [logp <cg‘(’,‘;)e =c| {c,,g})] —logp (cgg‘;f =c| {cng}),

X5, =argmax, [Iogp(c??,i,f)e =c| {Cng})] .

and x,, € {0} uN is the ‘extra‘ noise counts allocated to count matrix
entry monthe top of the MAP point x;,. We refer to the vector of extra
noise counts and MAP counts as x and x*, respectively. Minimizing £
subjectto the total noise constraints givenin equation (12) isequivalent
to solving the MCKP problem. In the new notation, £ conveniently
achieves its minimum value of 0 at x = 0, which corresponds to the
unconstrained MAP point. This is due to implicitly setting the MAP
pointasthe reference pointin the definition of W,,.. The strict logarith-
mic concavity of noise posterior distributions implies strict convexity
of W, inthe following discrete sense:

Wm,c+1 + Wm,c—l > 2Wm,c’ m=1,.., |M|’ (30)

which follows from the definition of alog-concave discrete distribu-
tion. As a consequence, £ emerges as a separable function of strictly
convex one-dimensional functions over non-negative integers. We will
use this property repeatedly to establish the optimality of
coordinate-ascent moves. We define B(4) as the subspace of points
that satisfy the total noise constraint with equality at L* + A:

B(A) = {(xls e X)) (3

> x,,,=L*+A}.

mem

We observe that B(4) is a discrete convex set in the sense that, if
(X1, ..., Xpar) € B(A), then (xq, ..., x; + 1, ...,X — Lxpq) € B(A)foralliand).

As a consequence, the restriction of £ to B(4) is also strictly convex,
implying that (1) any local minimum of £ over B(4) is the global mini-
mum and (2) the global minimum of £ over B(4) is unique. Therefore,
to prove the optimality of coordinate ascent, it is sufficient to show
that the point obtained by applying coordinate ascent to the minimizer
of £insubspace B(4), namely x*(4), yields alocal minimum inthe next
subspace B(4 +1). Global optimality and uniqueness follow from strict
convexity. Consider the set of all || local coordinate ascent moves
from x*(4), and let /i be the coordinate to which adding a noise count
accrues the smallestincreasein £. Thisimplies that

Wi (ayrn = Winxe (a) < Wi () = Wi (a), - Ym# . (32)
We denote the coordinate-ascent update of x*(4) as X(A + 1):
Xm(A+1) =x5(A) + A (33)

The set of nearest-neighbor points of X(A + 1), namely Ny 1), can be
written as the union of three mutually exclusive sets of points: (1) N,
points obtained by moving backward along coordinate riand moving
forward along another coordinate i # i; there are || — 1such points;
(2) N, points obtained by moving further forward along coordinate i
and moving backward along another coordinate i # rii; thereare |M| — 1
suchneighbors; (3) N, points obtained by keeping coordinate rizfixed,
choosingtwo other coordinatesi,jsuchthati # j # m, moving forward
along i and backward along; there are (|»| — 1)(|M| — 2) such moves.
Put together, the three mutually exclusive sets comprise |M|(|M] — 1)
nearest-neighbor points of X(A + 1),

N)Z(A+1) =N_UN, UNJ_.

We wish to show that £(x € Ny a41)) > £L(X(A +1)). First, we note that

the |»| — 1pointsin N, coincide withthe || — 1rejected forward moves,
which by definition lead to a higher value of £ over B(4 +1)
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(equation (32)). Therefore, all pointsin N_are directions of ascent. For
anarbitrary pointx. € N, obtained by stepping backward along coor-
dinate i and further forward along riz, we have

LX) —L(X(A+1) = [Wm;{;(mu + Wi (a) — 2me;n(A)+1]
>0

+ [Wm'x:'n(A)

>0
(34)

The first termis positive due to strict convexity, and the second term
is positive due to x*(4) being the minimizer of £ in subspace B(4).
Finally, forapointx, € N, obtained by stepping forward and backward
along coordinates i and}, respectively, we have

LX) = LX(A + 1)) = Wi a)41 + Wi (a)-1 = Wi (a) = Wi (a) > 0,
(35)

which directly results from x*(4) being the minimizer of £in subspace
B(4). Put together, we have shown that X(A + 1) is alocal minimizer of
£insubspace B(4 +1). Strict convexity implies that X(A + 1)isalso the
unique and global minimizer:

X*(A+1)=X(A+1). (36)

Therefore, following the iterative coordinate-ascent trajectory that
connects the MAP point x*(0) to x*(4) yields the unique solution of the
strictly convex MCKP problem. There are 4 = |L — L*| iterations, and
eachiterationinvolves |»|comparisons to locate the optimal coordi-
nate. Therefore, the complexity of this algorithmis O(|a] x |L — L*]). As
mentioned earlier, the case 4 < 0 canbe worked out by symmetry, that
is, replacing ‘backward’ moves with ‘forward’ moves.

In practice, we implement the coordinate-ascent strategy by
pre-computing, pooling and sorting differential coordinate ascents
6 =W — Wi . Eventhough the time complexity of thisimplementa-
tionis O(IM||L — L*| x log(|M]| x |L — L*|)), it runs faster on GPU hardware
by leveraging parallelism.

On the asymptotic bias of canonical Bayes estimators

We mentioned the shortcomings of canonical Bayes estimators as
part of our motivations for developing application-specific integer
noise estimators. These include the non-integral estimates obtained
by the posterior mean and the asymptotic bias of the posterior mode
estimator, also known as the MAP estimator. In this section, we study
these estimatorsin more detail in asimple setting thatis related to our
application. We consider the simplifying limit ® > 0 and g(2) » 6(Z- Z)
inequation (11), focus onasingle count matrix entry and drop the nand
gindices for brevity. In this limit, the posterior is found to be

Poisson(c—c""ise “lcell) Poisson(c"mse Mnoise)

choise | ¢} —
p( ‘ ) szisczo Poisson(c—cnoise | yeell) Poisson(cnoise | Anoise)) (37)
= Bi ial A — choise. -
= binomial{p = AHOT_H‘CE"’ Nsyccess = € 5 Mirial =€

Here, A"*¢ and u"*** correspond to the noise count and cell count rates
at the latent variable concentration point Z. We have also used
limg_,o NegBinom(x | i, &) = Poisson(x | )} The binomial equivalence can
be either derived by interpreting Poisson variables as the sum of Ber-
noullivariables or by resorting to the algebraic expression of the Pois-
son probability mass function. In this limit, we find the posterior mean
(PM) and MAP estimators to be

noise Anoise

Cpm

= Anoise 4 yycell ?

. (38)
snoise Anoise
Cmap = l(C +D Anoise 4 yell J :

at u/i,xi*(A)—l — Wiy a) - Wu;(A)] > 0.

Note that the expression for ci¢i¢ is only valid when the expression
appearinginthefloor functionis non-integer, whichis the case except
for ameasure zero set of points.

We consider Nindependent and identically distributed realiza-
tions of c"*¢and c*" and study the asymptoticbias of the two estimators
insample mean. This analysisis anidealization of taking a population
of N> « droplets containing identical cells and checking whether or
not the empirical mean of a given noise estimator converges to A",

For the posterior mean estimator, we have

. noise
Jnoise A

E [CPM ] = Anoise, (39)

] = W ECNPOisson(/]nol>e+”cell)[C

Therefore, we find posterior meanto be consistent and asymptotically
unbiased. However, the estimator clearly yields non-integer values,
whichis undesirable. For the MAP estimator, we have

/lnoise

E [c”"M‘j{ff] = " Poisson (c| A"°ke 4 pyeell) | (¢ + 1) J . (40)
c=0

Anoise 4 ”cell

It is easy to see that this estimator is asymptotically biased. The
floor term is identically vanishing for c < ¢’ = [p*"(A"*¢)™]. In the rela-
tively low-noise limit A" « !, ¢’'becomes arbitrarily larger than the
mode of ¢, which is ~ g" in this limit, and, subsequently, E|éeie
becomesarbitrarily smaller than the expected value of "¢, While the
asymptotic bias of the MAP estimator can be studied analytically, we
find it more straightforward to resort to anumerical study. We define
the relative asymptotic bias of the MAP estimator as
Anoise] _ noise

CMAP

ﬁMAP (Anoise’”cell) = (41)

Anoise

Supplementary Fig. 10 shows M for a range of noise count and cell

count prior rates. We notice ™" ~ -1 in the regime A" « y*, as

expected from the pathological behavior of the MAP estimator in the
Jnoise

low-noise regime. Inthisregime, éyxp ~ 0,implyingthat no noise count
isremoved fromany cells.

Implementation details and technical remarks

The defaultarchitecture for the encoder network NN, that maps ¢, to
the bundle of z-posterior location and scale (z,,, z,,,,) has one hidden
layer of 500 units, and the encoded dimension of Zof z,,is 100. Similarly,
the decoder network NN, that maps z, to x,, has one hidden layer of
500unitsandalinear readout, followed by asoftmax operation tobring
the output to the (G - 1) simplex of normalized endogenous feature
frequencies. The encoding network fory,, ¢'and,, denoted by NN,
forbrevity, works as follows. Inputs to the network consist of raw counts
as well as three additional features that are handcrafted: (1) the log of
total counts per droplet, (2) the log of the number of nonzero genes
per dropletand (3) the overlap with the current estimate of the ambient
RNA profile (whichis calculated as alog probability that the observed
droplet counts were drawn froma Poisson withrate equal to x3). Hand-
crafted features are concatenated to counts to form the input to the
network. By default, the network has two hidden layers, [100, 50]. From
the last hidden layer, three separate linear transformations take the
hidden state and produce (1) logit cell probability logit (g,), (2) the
inverse variance of the gammadistribution fore,and (3) the log of mean
cell sizes d<!. Weights are initialized using PyTorch defaults, except
for the weights that connect the handcrafted log counts per droplet
input feature to the output for g,, which are initialized to 1, so that the
network starts with a condition that cell probability should closely
follow log counts. Softplus non-linearities are used throughout. In
practice, CellBender results are not very sensitive to the architecture
of the encoders, and network architectures can be changed from the
default values using command-line arguments.
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We note that theinitially learned biological gene expression land-
scapeNN,(z,) may itselfbe contaminated with background RNA counts.
However, astheinference procedure progresses and as the estimate of
the background RNA profileimproves, the maximum likelihood princi-
pleencourages the neural network to correctin aself-consistent fash-
ionand learn to represent background-free gene expression profiles.

For numerical stability and to preclude vanishing gradients, we
handle all probabilities in logit space in our implementation. During
training, the log probability of z,is only added to the ELBO for droplets
that have been found to contain cells (that is, for droplets n where a
sampleofy,is1). The discrete latent variabley, cannot be reparameter-
ized, and so we use full enumeration over cell or no cell (y,being1or 0)
in our variational posterior to reduce variance. This is achieved using
the TraceEnum_ELBO SVl objective available in Pyro. Integration over
the continuous latent variables appearing in the ELBO (equation (4))
is done using a single Monte Carlo sample.

Training happens in random minibatches. Each full epoch trains
on a fixed subset of barcodes from the dataset as well as a randomly
sampled subset of empty droplet barcodes that changes each epoch.
Thisisdone to cover the tens of thousands of empty droplets without
taking excessive computation time. The fraction of each minibatch
that is composed of these randomly sampled empty droplets can be
specified using acommand-line argument (by default, we use 20%).

Thetraining loop converges typically withinabout 150 epochs. For
a typical 10x scRNA-seq experiment containing 5,000-30,000 cells,
the total runtime of the tool ranges from around 20 min to 1 h using
an NVIDIA Tesla T4 or K80 GPU, depending on the size of the dataset
and chosen parameters. The stochastic optimizer used is a version of
the Adam optimizer with gradient clipping. A OneCycle learning rate
scheduleris used by default. Optimization proceeds for a pre-defined
number of epochs, which can be set via command-line arguments.
The default is 150 epochs, and the OneCycle scheduler increases the
learning rate to 10x the user-defined ‘~-learning-rate’ at maximum.
The defaultlearningrateis1x 107,

Thetoolsaves checkpoints at user-defined intervals, which canbe
used to resumetrainingor to create anew output with adifferent FPR.
Checkpoints enable the use of cheaper pre-emptible cloud machines
via the Terra platform (https://app.terra.bio). More generally, any
workflow deployment using Cromwell (https://github.com/broad-
institute/cromwell) version 55+ can automatically benefit from this
checkpointing functionality, so that a pre-empted workflow can pick
up whereit left off instead of starting from scratch.

Single-cell analysis workflow and cell quality-control details
Analysis workflows for single-cell data were carried out in SCANPY"
version 1.9.1. We employed a rudimentary cell quality control after
CellBender, that is, removing cells using percentile-based thresholds
on UMI count, gene count and mitochondrial read fraction. UMAPs
were created after (1) finding highly variable genes using the seurat_v3
algorithmimplemented in SCANPY, (2) normalizing counts per cell, (3)
log scaling counts, (4) scaling counts of 2,000 highly variable genes and
(5) performing PC analysis onthose scaled values for the highly variable
genes. A nearest-neighbor graph was constructed with 20 neighbors
based on cosine distance in PC space (top 25 PCs). Clustering was
performed using the Leiden algorithm at the same resolution for both
raw and post-CellBender data. Dataset-specific cell quality-control
thresholds and the statistics of initial and final cell calls are as follows.

For the pbmc8k scRNA-seq dataset, we removed the top 5% of
high-UMI-count droplets and the top 5% of high unique gene count
droplets (to eliminate doublets) as well as the top 10% of high mito-
chondrialread fraction droplets and with no lower cutoff for the total
number of genes per droplet. This left 7,515 cells remaining from an
initial 8,903 droplets.

For the rat6k snRNA-seq dataset, we removed the top 15% of
high-UMI-count droplets and the top 15% of high unique gene count

droplets (to eliminate doublets) as well as the top 10% of high mitochon-
drialread fractiondroplets and eliminated droplets with fewer than100
genes. This left 5,868 cells remaining from aninitial 10,445 droplets.

For the pbmc5k CITE-seq dataset, we removed the top 5% of
high-UMI-count droplets and the top 5% of high unique gene count
droplets (to eliminate doublets) as well as the top 10% of high mito-
chondrial read fraction droplets with a lower cutoff of 300 genes per
droplet. This left 4,451 cells remaining from aninitial 5,754 droplets.

For the hgmm12k scRNA-seq dataset, no cell quality control was
performed before creating the hgmm12k result plots: all CellBender
‘non-empty’ droplets are included.

pbmc5k CITE-seq dataset quality control and normalization
For the plotin Fig. 6e, the following antibody features were omitted
due to low correlation between antibody counts and mRNA counts
per cluster in the raw data: CD34_TotalSeqB (also has very low mRNA
counts), CD45RA _TotalSeqB and CD45R0O _TotalSeqB (has poor corre-
lation with PTPRC mRNA counts, which is understood given the high
splicing specificity of PTPRPC in different immune subtypes, which
make the expectation of having a linear correlation meaningless in
principle), CD69_TotalSeqB, CD137_TotalSeqB, CD197_TotalSeqB,
CD274 _TotalSeqB, IgG1_control_TotalSeqB, IgG2a_control_TotalSeqB
and IgG2b_control_TotalSeqB. Low correlation was defined as a slope
ofless than1for afit using weighted ordinary least squares when plot-
ting loglp antibody counts versus loglp mRNA counts. The following
features were omitted due to low mRNA counts in the raw data: CD15_
TotalSeqB, CD25_TotalSeqB, CD278 TotalSeqB and PD-1_TotalSeqB.
Low mRNA counts were defined as the maximum mean expression
value over all clusters being <0.2 counts. These features were left out
for clarity of presentation (the scaling transformation, below, does not
work well for those outliers), but the excluded features are all plotted
inSupplementary Fig. 9a,b.

The scaling transformation used to plot datain Fig. 6e by collaps-
ingall dataontoasinglelineis as follows. The raw RNA expression data
arex, while the raw antibody dataare y:

_ X
T std()’

Xrescaled

Yy
X . = —,
Yintermediate std(y)
m — Xrescaled Vintermediate
Xrescaled Xrescaled

__ Yintermediate

Yrescaled m

Simulated data generation

Data were simulated according to a model, which was slightly and
intentionally mis-specified for CellBender’s model, in that each cell
within a cell type kis not given the exact same underlying expression
profile °, butinstead each cell hasits expression profile drawn from
aDirichlet distribution withacommon set of concentration parameters
for each cell type, (. Thus the data will be a bit overdispersed com-
pared to CellBender’s model. Details of the simulations are included
inanotebook for code reproducibility, and the data-simulation func-
tionisincluded as part of the CellBender package. The simulator first
samples the base gene expression profiles for kcell types, a®, from flat
Dirichlet distributions, for example, af ~ Dirichlet(a),
ai,l) ~ Dirichlet (@) and so on. These k cell type expression profiles are
then optionally made to be artificially similar to ag” viaaparameter
by applying the transformation al’ « (1 - n)al’ + na”. Note that this
transformation is not symmetric, and so the different simulated cell
types will have different gene expression complexity (in particular, in
the simulationshown in Fig. 5f, cell type 2 has many more unique genes
withrelatively lower expression rates than cell type 1). Next, the ambi-
entprofile x2 is set to the (normalized) average of a{°, weighted by the
number of simulated cells of each type and the average UMI per cell
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type. Finally, foragiven cell type kwith n cells, the simulation proceeds
as

X% ~ Dirichlet (af’), forall cellsn
€, ~ Gamma (g4, €,)
d, ~ lognormal(d,,d,)
dy™™ ~ lognormal (&, dg™™)
Pn ~ Beta(pa. pp)
Yn = lifcell, otherwise O

Ilg;g) =0=pn)Yn€n anSzlg

/lng =€y [(1 = Pn) dzmptng + ang (yndn + d,ezmpty)]

cell (k)
ng

, (42)

c ~ NegBinom (,,,, ®)

choise , Poisson (/lng)

ng
(k) _ cell(k)
Cng = Cng

+ C|n1§ise

where the simulated counts for celltype kare ¢y, and y, isthe same as
Xzinthese simulations, and all the other variables not specified above
are hyperparameterinputsto the simulation. Cells are simulated with
Y.=1,and empty droplets are obtained by settingy, = 0. Cell counts are
simulated, one cell type k at a time, followed by empty droplets, to
obtain afull dataset.

Generation of the rat6k dataset

Animal experiments were approved by the Institutional Animal Care
and Use Committee at the Broad Institute. An individual 17-week-old
male Wistar rat (Charles River) was acclimated for 2-3 weeks to the
Broad vivarium, with ad libitum access to water and chow diet. The
left atrial section of the heart was flash frozen in liquid nitrogen and
stored at—80 °C until use. Frozen tissue was mounted on OCT and sec-
tioned. The tissue section was then processed for nuclearisolation. An
input of 7,000 nuclei (5,000 calculated recovery) was used for droplet
generation and library construction according to the manufacturer’s
protocol (10x Genomics, single-cell 3’ version 2 chemistry) with minor
modifications. Sequencing was performed onan Illumina NextSeq 550
in the Broad Institute’s Genomics Platform (https://genomics.broad-
institute.org). BCL files were processed using CellRanger version 3.0
software to obtain a count matrix.

Software

CellBender remove-background inputs. The current version of Cell-
Bender remove-background (version 0.3.0_rc) takes the following file
formats as input: (1) raw HDFS5 files from 10x Genomics’ CellRanger
version 2+ count pipeline, (2) raw MTX files, with accompanying TSV
files, in CellRanger format, (3) raw DropSeq DGE files, (4) HSAD files
in AnnData format”, (5) raw BD Rhapsody CSV files, and (6) Loom files
readable by AnnData. Ensure that empty droplets are included in the
file. The AnnData, DropSeq DGE and CellRanger MTX formats are
particularly general, and data from other sources can be massaged
into one of those formats.

CellBender remove-background outputs. The output of CellBender
remove-background provides several useful quantities: (1) aninferred
background-subtracted count matrix, (2) the probability that each
droplet contains a cell, (3) a low-dimensional latent representation
of gene expression for each cell and (4) the ambient profile, among
other latent variables.

Thereisaninput parameter, ‘-—fpr’, which controls the expected
nFPR, where a false positive is a real count that has erroneously been
identified as background and removed. Setting nFPR to 0.01 means

that the algorithm will remove as much noise as possible while control-
ling the expected removal of real signal to ~1% above the estimated
dataset-wide noise level. It is to be understood that this constraint is
enforced in expectation and is approximate: assuming that the model
fits the data perfectly (no model mis-specification), the estimate will
be correct. There is an inherent tradeoff in noise reduction in which
the removal of more noise comes at the expense of the removal of more
signal. The nFPR parameter allows the user to control this tradeoff.
Multiple FPR inputs will result in multiple output count matrices.
Because we marginalize over cjo*¢and c,ﬁ;"during training, constructing
the output cf,z,” atagivennFPRis aseveral-step process and is detailed
inSupplementary Section 5.4.

The probability that each droplet contains acellis given by g,, the
latent variable encoded by NN,. The low-dimensional latent representa-
tion of gene expression is given by the encoded z,,, for each cell. Fur-
thermore, the ambient RNA profile is inferred as x3. By default,
CellBender remove-background creates an HTML output report, show-
ing several diagnosticsincluding progress of the inference procedure
and salient changes in the output count matrix, making recommenda-
tions and issuing warnings as necessary.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The datasets used in this study are the following: pbmc8k (the publicly
available pbmc8k dataset from 10x Genomics called ‘8k PBMCs from a
healthy donor’, runwithversion2chemistryand analyzed with CellRanger
version2.1.0,available at https://www.10xgenomics.com/resources/dat
asets/8-k-pbm-cs-from-a-healthy-donor-2-standard-2-1-0); heart600k
(the published dataset from the Broad-Bayer PCL called ‘Single-nuclei
profiling of human dilated and hypertrophic cardiomyopathy’ (ref. 23),
run with 10x Genomics 3’ capture version 3 chemistry and analyzed
with CellRanger version4.0.0, available at https://singlecell.broadinsti-
tute.org/single_cell/study/SCP1303); hgmm12k (the publicly available
hgmmi2k dataset from 10x Genomics called ‘12k 1:1 Mixture of Fresh
Frozen Human (HEK293T) and Mouse (NIH3T3) Cells’, run with version 2
chemistry and analyzed with CellRanger version 2.1.0, availableat https://
www.10xgenomics.com/resources/datasets/12-k-1-1-mixture-of-fres
h-frozen-human-hek-293-t-and-mouse-nih-3-t-3-cells-2-standard-2-1-0);
pbmc5k (the publicly available pbmc5k dataset with antibodies from 10x
Genomics called ‘Sk Peripheral Blood Mononuclear Cells (PBMCs) from
a Healthy Donor with a Panel of TotalSeq™-B Antibodies (Next GEM)’,
run with version 3 Next GEM chemistry and analyzed with CellRanger
version 3.1.0, available at https://www.10xgenomics.com/resources/
datasets/5-k-peripheral-blood-mononuclear-cells-pbm-cs-from-a-he
althy-donor-with-cell-surface-proteins-next-gem-3-1-standard-3-1-0);
and rat6k (an snRNA-seq dataset from a healthy Wistar rat left atrium,
comprising approximately 6,000 nuclei, processed onthe 10x Genomics
platformusing version2 chemistry and analyzed with CellRanger version
3.1.0. The dataset was provided by P.T.E.s group at the Broad Institute
aspartofthe Broad-Bayer PCL. The experiment was performed by A.A.
and A.-D.A. The dataset is publicly available on Broad’s Single Cell Portal
at https://singlecell.broadinstitute.org/single_cell/study/SCP2148).
Datasets analyzed only in the Supplementary Information are as follows:
smartseq3xpress_pbmc (a Smart-seq3xpress (well-based) scRNA-seq
dataset from healthy human PBMCs called ‘Scalable full-transcript cover-
age single-cell RNA sequencing of PBMCs using Smart-seq3xpress’and
published by Hagemann-Jensen et al.”. This dataset was kindly provided
to the authors in count matrix format by C. Ziegenhain, an author of
the referenced paper. We subsetted the data to the 16 384-well plates
that came from ‘donor8’ and fluentbio_pbmc (the publicly available
scRNA-seq dataset of healthy human PBMCs from Fluent BioSciences
called ‘Profiling 20k Immune Cells in Healthy PBMCs from a Single
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T20 Reaction’, generated with T20 PIPseq and analyzed with PIPseeker
version 1.1.3 by Fluent Biosciences®’, available at https://fbs-public.
s3.us-east-2.amazonaws.com/public-datasets/pbmc/raw_matrix.tar.gz).

Code availability

CellBender can be obtained from https://github.com/broadinsti-
tute/CellBender. Additional documentation is available at https://
cellbender.readthedocs.io. CellBender modules are also available as
workflows on Terra (https://app.terra.bio), a secure open platform
for collaborative omic analysis, and can be run on the cloud with zero
set-up. We have implemented the model and the inference method
using Pyro probabilistic programming language'® and PyTorch® and
presented it as a user-friendly, production-grade and stand-alone
command-line tool. We refer to the background noise-removal algo-
rithmimplemented in CellBender as remove-background.
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scRNA-seq pbmc8k dataset: UMI curve, cell calling, latent space, and gene removal
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Extended Data Fig. 4 | UMI curves from the raw data together with various
CellBender outputs for the pbmc8k and rat 6k datasets. (a-d) pbmcgk, and
(e-h) ratek. (a,e) Theraw UMI curves, annotated with areas of cells and empty
droplets. Notably, the distinction is much more difficultin (e), the nuclei dataset
extracted from heart tissue. (b,f) Cells probabilities inferred by ce11Bender on
same UMl curves from (a,e) respectively. The region of transition from “surely-

cell” to “surely-empty” ismuch broader in the snRNA-seq dataset. (c,g) First two
principal components of the latent gene expression embedding inferred by
CellBender, colored by Leiden clustering from a separate scanpy analysis. The
structure very closely reflects the labels attributed by that separate analysis. (d,h)
Scatter plots showing removal of each gene by ce11Bender (each dotis agene,
MALATL s off-scale). Several top denoised genes are indicated.
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Extended DataFig. 5| Presence of doublets does not impact the denoising
performance of Cel1Bender. (a,c,e) Simulated dataset without doublets. (b,d,f)
Simulated dataset where 20% of the cell-containing droplets are doublets. (a)
UMAP of the gene expression profile of the three simulated cell types. (b) Same
as (a), butincluding doublets, which are highlighted in bold color. Doublets

with cells of two different types form their own clusters in UMAP space, due to
their unique transcriptional profile. (¢) The learned Ce11Bender prior on gene
expression, visualized via PCA, shows three clusters for the three cell types. (d)

With doublets present, the prior on gene expression now additionally contains
clusters for each type of doublet. From the standpoint of Ce11Bender, a doublet
islike aunique cell type. (e,f) Denoising performance has been quantified using a
ROC curve, and shows that denoising metrics are nearly identical (TPR 0.750, FPR
0.041) whether doublets are present or not. The error bars shown in panels e-f
correspond to theinterquartile range of TPR (vertical) and FPR (horizontal) over
N=2400 simulated cells.
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experiment. The UMAP shows the expected cell types, in addition to some

Nature Methods


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-023-01943-7

a Cardiomyocytes Fibroblasts Cell type Batch
L sample
Six simulated datasets: " g po
Only difference between
A2 4000 2000 o~ . I
batch A and batch B % » Cardiomyocytes %
. A3 4000 2000 = Fibroblasts =
is the number of 5 5
. B1 1000 2000
cardiomyocytes
B2 1000 2000
B3 1000 2000 UMAP1 UMAP1
Raw data C Simulated cardiomyocytes: batch A vs. B d Simulated fibroblasts: batch A vs. B
Raw data Raw data
5 HS35t5, Adam33
b 6 Rbfox1 Tbx5
g . .
— 4 — “#Pik3apl
[9) o W7 Cox7
cM Fib g3 R 93 Iy
’ p > ¢ 3 © > c 4 : :
cardigpioue: | 88888 28992838838888 8| ga Sa
EUPPLURESIRETEYSTT DY €32 €3
FeSE2EISEEIERREREELD 28 522
< nwg = O 43 29 o :
Fraction of cells — — e e %
S o
ean saresson 2 -2 0 2 4
— Effect size Effect size
00 25 50 [log2 fold change] [log2 fold change]
CellBender: FPR 0.01 f  simulated cardiomyocytes: batch A vs. B g Simulated fibroblasts: batch A vs. B
CellBender: FPR 0.01 CellBender: FPR 0.01
e :
v3 o
cM Fib g2 =24
r . ! c g c ‘>“
i M 7 @ 7 2 %
IR #0000000008688868888 ga2 =  BmpS
eI E £3 522 Pik3apl
= > = Qo v =
Fraction of cells hl' '—I‘ COX7C
roup (%) » Rbfu;‘?ﬂs
°c000Q tn,
o dodosorto 0 0 ‘Adam33
Mean expression -4 4 -5.0 -25 0.0 2.5 5.0
Effect size Effect size
00 25 50 [log2 fold change] [log2 fold change]

Extended Data Fig. 8 | Systematic background noise as asource of batch
variation and spurious differential expression across batches. (a) Setup of the
cohort of simulated datasets, where there are two cell types whose expression
profiles are taken from real data (rat 6k) for cardiomyocytes and fibroblasts. The
only difference between simulations from batch A and batch B is the number of
cardiomyocytes. Noise ends up being different in the two batches due to these
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data. (e-g) cel1Bender denoised data. (b) Dotplot showing top cardiomyocyte

and fibroblast marker genes. Background noise causes marker genes to show up
inthe off-target cell type at alow level. (e) Marked cleanup of the dataset at an
aggregate level. (c,f) The cardiomyocytes show no differentially expressed genes
betweenbatch A and B, before or after Ce11Bender. (d) In the raw data, many
genes show up as being significantly differentially-expressed due to background
noise. (g) After cel1Bender, these spurious results have disappeared (a few of
which are labeled). Benjamini-Hochberg-corrected FDR value for significance
(red dotted line) is 0.01in all volcano plots.
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Extended Data Fig. 9| Comparison of output summarization methods
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Comparison of per-gene performance of different
noise estimation methods. Methods are discussed in Supplementary Sections
4.5 (MCKP), 4.6 (Posterior CDF), and 4.7 (PR-u and PR-q). Each plot shows the
over-removal of each gene (fraction removed - fraction that should have been
removed according to truth) for the given method with the hyperparameter

setting specified in the title. Each dot is a gene. Positive values indicate that too
many counts of the gene were removed at the level of the entire experiment. Row
1column1shows the posterior mode, row 2 column1shows the posterior mean,
and row 3 column1shows asingle sample from the unregularized posterior
(a=0).
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Data collection  All of the data used in this study (public domain and generated by us) are collected using 10x Genomics Single-Cell Gene Expression products
and softwares. The chemistry version and software versions are fully detailed in Supplementary Section S.4 (Data Availability).
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We evaluate our computational method on n=5 single-cell RNA sequencing datasets. Different datasets contain different number of assayed
cells (not determined by us a priori) and is reported in Supplementary Sec. S.4. The n=5 samples are chosen to represent a diverse range of
tissue types and protocols and each is analyzed separately. Datasets were chosen to illustrate applicability of CellBender to different tissue
types and data modalities. No hypothesis is tested across the n=5 samples (not applicable), n=5 was an arbitrary choice (due to space
constraints).

Data exclusions  Some of the protein-mRNA pairs were excluded in a specific CITE-seq analysis (Fig. Se) that seeks to test the linear relationship between
protein and mRNA measurements (see Sec. 3.5, and Supplementary Sec. S.1.13 for omission rationale, also copied here). The following
features were omitted due to low mRNA counts in the raw data: CD15_TotalSeqB, CD25_TotalSeqB, CD278_TotalSeqB, and PD-1_TotalSeqB.
Low mRNA counts was defined as the maximum mean-expression value over all clusters being < 0.2 counts. This exclusion is in the spirit of the
common practice of excluding lowly expressed genes from scRNA-seq analyses. Leaving out these features is for clarity of presentation, and
the fact that normalization transformations are ill-defined in this extreme low SNR regime. We additionally excluded CD34_TotalSeqB which
was likely an antibody failure (no discernible relationship with mRNA counts, either in raw or CellBender denoised data). Finally,
CD45RA_TotalSeqB and CD45RO_TotalSegB, which are well-known isoforms of CD45 that are known to be negatively correlated with one
another, were excluded from Fig. 5e, though, they were included in Fig. 5a-d and discussed at length. Finally, all of the antibody counts
(including these specific exclusions) are shown in Supplementary Fig. 20 for completeness.

Replication Our main conclusion, i.e. the effectiveness of CellBender in removing systematic background noise from single-cell experiments, replicates
across the n=5 distinct studied datasets. All replication attempts were successful.

Randomization Not applicable to this work since the subject matter is not trial design and the results are not trial based. Real datasets we chose to
demonstrate the utility of our denoising method are in wide usage in the community (human and mouse mixture, PBMC, etc).

Blinding The datasets were collected either by 10x Genomics for public demonstration of their technology, or by us as a part of studying the diversity

of human and rat cardiac cells using 10x technology. The datasets used in this study were not collected specifically for the purpose of
evaluating CellBender. There is no group allocation the investigators could be blinded to.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals One male Wistar rat, 17 weeks old.
Wild animals The study did not involve wild animals.

Field-collected samples  The study did not involve samples collected from the field.

=
Q
—t
-
=
()
=
D
wv
D
Q
=
(@)
o
=
D
o
¢}
=.
>
(e]
wv
e
)
Q
=
A

020¢ f1dy




Ethics oversight Animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC) at the Broad Institute.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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